Tail-GAN: Simulation of extreme events with ReLU neural networks - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2021

Tail-GAN: Simulation of extreme events with ReLU neural networks

Résumé

Feedforward neural networks based on Rectified linear units (ReLU) cannot efficiently approximate quantile functions which are not bounded, especially in the case of heavy-tailed distributions. We thus propose a new parametrization for the generator of a Generative adversarial network (GAN) adapted to this framework, basing on extreme-value theory. We provide an analysis of the uniform error between the extreme quantile and its GAN approximation. It appears that the rate of convergence of the error is mainly driven by the second-order parameter of the data distribution. The above results are illustrated on simulated data and real financial data.
Fichier principal
Vignette du fichier
Tail_GAN_HAL.pdf (1.12 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03250663 , version 1 (04-06-2021)
hal-03250663 , version 2 (16-06-2021)
hal-03250663 , version 3 (22-03-2022)

Identifiants

  • HAL Id : hal-03250663 , version 1

Citer

Michaël Allouche, Stéphane Girard, Emmanuel Gobet. Tail-GAN: Simulation of extreme events with ReLU neural networks. 2021. ⟨hal-03250663v1⟩
1201 Consultations
719 Téléchargements

Partager

More