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Abstract
Feedforward neural networks based on Rectified linear units (ReLU) cannot efficiently ap-
proximate quantile functions which are not bounded, especially in the case of heavy-tailed
distributions. We thus propose a new parametrization for the generator of a Generative
adversarial network (GAN) adapted to this framework, basing on extreme-value theory.
We provide an analysis of the uniform error between the extreme quantile and its GAN
approximation. It appears that the rate of convergence of the error is mainly driven by
the second-order parameter of the data distribution. The above results are illustrated on
simulated data and real financial data.
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1. Introduction

Context of risks. Analyzing extreme events is an important issue in economics, engi-
neering, and life sciences, among other fields, with significant applications such as actuarial
risks (Asmussen and Albrecher, 2010), communication network reliability (Robert, 2003),
aircraft safety (Prandini and Watkins, 2005), analysis of epidemics, and so forth... In the
last two decades, it has taken even more importance in financial risk management, because
of the increasing number of shocks and financial crises. Among the wide range of exercises
in this field, stress test (European Banking Authority, 2014) has become a main guideline
for the regulator in order to assess the banking system resilience against the realizations of
various categories of risk (market, credit, operational, climate, etc). To this end, numerical
simulation of unfavorable extreme (but plausible) scenarios is a major tool to study the
consequences on these risks. Given a stochastic model of risks, various sampling schemes
are available (for instance, using importance sampling (Bucklew, 2004, Chapter 4), MCMC
with splitting – (Gobet and Liu, 2015), or interacting particles system – (Del Moral and
Garnier, 2005)), with the potential advantage of reducing the statistical fluctuation over a
naive Monte Carlo method. Though presumably more informative for a given number M
of samples, these methods suffer from a higher computational complexity (notably in high
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dimension): Thus, one might wonder how to get extra samples in an efficient way, by leverag-
ing the previous M samples. Somehow, the situation is similar to a case where the previous
samples are viewed as observed data and where we seek a data-driven method able to sample
similarly to that empirical distribution, without necessarily the knowledge of the sampling
method that has generated the observed data. This corresponds to the recent paradigm of
Generative adversarial network (GAN) models initiated by (Goodfellow et al., 2014) or of
Variational autoencoder (VAE) by (Kingma and Welling, 2014). The novelty in our work
is relative to the context of risks, where we are interested in a generative data-based model
able to reproduce – with high-fidelity – specific extreme statistical properties, while being
fast in the simulation phase. The issue is also meaningful out of the context of generating
the learning data set by sophisticated Monte Carlo methods, i.e. when they correspond to
true historical data, as if we were in a pure statistical modeling framework (see experiments
in Section 3).

Background results. Generally speaking, different types of generative models have been
developed lately (Foster, 2019) and in this work, we focus on GANs, which have gained a
tremendous popularity from the original work of (Goodfellow et al., 2014) and its extension
using the Wasserstein distance (Arjovsky et al., 2017). Kuratowski Theorem (Bertsekas and
Shreve, 1978, Chapter 7)-(Villani, 2009, p.8) ensures that any random variable X on Rd
(and more generally on a Polish space) can be obtained by

X
d
= G(Z) (1)

for some measurable function G and some latent random variable Z in dimension d′ (see
Lemma 7 in the Appendix for a constructive proof with Z ∼ U([0, 1]) and d′ = 1) such that
for each mth marginal, m ∈ {1, . . . , d}, one has X̃(m) := G(m)(Z)

d
= X(m). This result is

one key to understand the ability of GANs to simulate realistic samples in a space of high
dimension d, starting from a latent space of moderate dimension d′. In practice, the selection
of this latent dimension is an open problem in the generative neural networks literature. A
GAN scheme is aimed at approximating the unknown G through a parametric family of
Neural networks (NN) G = {Gθ : Rd′ → Rd, θ ∈ Θ} and to learn the optimal parameter
θ? from a data set {Xi ∈ Rd, i = 1, . . . , n} of i.i.d samples from an unknown distribution
pX . It is performed by optimizing an objective function which can be interpreted as an
adversarial game between a generator and a discriminator chosen in a parametric family of
functions D = {Dφ : Rd → [0, 1], φ ∈ Φ}. In other words, Dφ(x) represents the probability
that an observation x is drawn from pX . Both the generator and the discriminator are
neural networks with opposite objectives: The former tries to mimic real data which seem
likely by the discriminator, while the latter tries to distinguish between the two sources. In
(Goodfellow et al., 2014), this optimization problem is defined as:

min
θ∈Θ

max
φ∈Φ

[EpX (logDφ(X)) + EpZ (log (1−Dφ (Gθ(Z))))] .

See (Biau et al., 2020a,b; Haas and Richter, 2020) for theoretical results and (Wiese et al.,
2020; Zhou et al., 2018; Remlinger et al., 2021) for the generation of financial time-series.

To the best of our knowledge, extreme events generation is only addressed by (Bhatia
et al., 2020) where the authors proposed first a distribution shifting in order to reduce the
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lack of training data in the extreme tails. Second, a GAN parametrization conditioned by
samples drawn from a generalized Pareto distribution is fitted to the shifted data. Finally,
an additional term representing some distance to a desired extremeness is added to the loss
function. Although numerical results on images are promising, we do not think that the
proposed parametrization gives theoretical support for generating extreme observations.

Our contributions. In a GAN setting, our purpose is to cope with two prominent issues,
that are mostly related to extreme-value theory. First, the number of data available in
extreme regions must be relatively small, by definition (even in the case of data that are
output of sophisticated sampling methods). Second, we restrict to the challenging situation
of heavy-tailed distributions (in the Fréchet maximum domain of attraction), where by
definition, extreme data take very large values. Therefore, the usual GAN approach cannot
work, as we now explain (and as the reader will check from our numerical experiments in
Section 3). Consider for a while the case d = d′ = 1 and say that G in (1) is approximated
by a ReLU NN under the form

Gθ(z) =

J∑
j=1

ajσ(wjz + bj), (2)

where σ(x) := max(x, 0) is the ReLU function, θ = {(aj , wj , bj), j = 1, . . . , J} ∈ Θ = R3J

and J is the number of units in the hidden layer. On the one-hand, if the latent random
variable Z were bounded, the output would be bounded and by no means, it would be a
good candidate for fitting the distribution of the unbounded random variable X. On the
other hand, taking for Z a Gaussian vector as it is often chosen, for example in (Bhatia
et al., 2020), would lead to a light-tailed distribution for Gθ(Z) since Gθ is sublinear w.r.t.
the input (Vladimirova et al., 2018), whereas we focus on the heavy-tail case. Clearly, such a
parameterization (2) of the generator cannot be efficient when extreme values are concerned.
Note that deeper NN would not overcome this issue either.
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Figure 1: Quantile function associated with the Burr distribution u ∈ (0, 1) 7→ qX(u) with
tail-index γ ∈ {0.25, 0.4, 0.5} and second-order parameter ρ = −1, see Table 4 for the
parameterization.
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To introduce our new parametrization (called Tail-GAN), consider X a real random
variable with cumulative distribution function FX defined on R. The inversion method by
Von Neumann Eckhardt (1987) gives that one can set G(u) := qX(u) := inf{x : FX(x) ≥ u}
with U ∼ U([0, 1]). Since we shall focus on distributions in the Fréchet maximum domain
of attraction (de Haan and Ferreira, 2006, Theorem 1.2.1) with positive tail-index γ, the
associated survival function F̄X(x) := 1− FX(x) decays at rate x−1/γ when x→∞, which
implies that qX(u) diverges as u → 1 at rate (1 − u)−γ . The tail-index γ is thus the main
driver of the behavior of extreme quantiles, see Figure 1 for an illustration. To be in a
position to apply results like the Universal approximation theorem (Cybenko, 1989) (any
continuous function on [0, 1] can be approximated with arbitrary precision by a one hidden
layer neural network), we shall transform the quantile function to avoid divergence in the
neighborhood of u = 1. To this end, for all (u, y) ∈ [0, 1)× (0,∞), let

Hu(y) = − log(y)
/

(log(1− u2)− log(2)) and fTIF(u) = Hu(qX(u)). (3)

It will appear in the sequel that fTIF is continuous on [0, 1] for all FX in the Fréchet
maximum domain of attraction, with fTIF(u) → γ as u → 1; fTIF is thus referred to as
the Tail-index function (TIF). Therefore, a ReLU NN could well approximate fTIF thanks
to the Universal approximation theorem, but to get even better approximation, we shall
consider a correction of the Tail-index function:

fCTIF(u) = fTIF(u)−
6∑

k=1

κkek (u) , u ∈ [0, 1],

which enjoys higher regularity in the neighborhood of u = 1. See Paragraph 2.2 for a
definition of functions e1, . . . , e6 and coefficients κ1, . . . , κ6. Now use a NN to approximate
the smooth function fCTIF, deduce an approximation of fTIF, and of the quantile function
by composing with H−1

u for each u (in view of (3)): all in all, we obtain the so-called
tail-GAN parametrization defined for all (z, x) ∈ [0, 1]× (0,∞) as

GTIF
ψ (z) = H−1

z

 J∑
j=1

ajσ(wjz + bj) +
6∑

k=1

κkek (z)

 , (4)

with H−1
z (x) :=

(
1− z2

2

)−x
. (5)

In the multidimensional setting d > 1 and d′ > 1, our strategy of approximation consists in
preserving the same parametric form for each marginal component, and in mixing the latent
components to generate dependence between the d coordinates (see Corollary 6): the m-th
coordinate will take the form, with z = (z(1), . . . , z(d)),

G
TIF(m)
ψ (z(1), . . . , z(d′)) = H−1

z(m)

 J∑
j=1

a
(m)
j σ

(
d′∑
i=1

w
(i)
j z

(i) + bj

)
+

6∑
k=1

κ
(m)
k ek

(
z(m)

) .

(6)

Let us highlight that, in (6), the mth coordinate of the generator GTIF
ψ (z) involves the mth

coordinate of z which is a d′− dimensional vector. The above construction of the tail-GAN
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generator thus constraints the latent dimension to be larger than the dimension of the data:
d′ ≥ d. The architecture of the associated neural network is illustrated on Figure 2 in the
case d = 2 and d′ = 3.
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Figure 2: Generator of the Tail-GAN with one hidden layer, d′ = 3 and d = 2.

We prove in Theorem 5 that the above tail-GAN parametrization converges uniformly
coordinate-wise, in the log-scale of the H.-transform. Joint convergence for all coordinates
is an open question, which is related to the delicate notion of upper tail dependence. How-
ever, numerical experiments in multidimensional setting fully support the relevance of this
parametrization. We observe that tail dependencies are extremely well reproduced.

The rest of the paper is organized as follows. The transformation of the quantile function
qX associated with an heavy-tailed distribution FX into a regular function fCTIF is presented
in Section 2: Under a second-order assumption, we show that fCTIF can be uniformly
approximated by a one-hidden layer neural network with some rate depending on the second-
order parameter ρ. Auxiliary results and technical proofs are postponed to Appendix. The
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performance of the method is illustrated on simulated data (Section 3) and real financial
data (Section 4). It is shown that, in both experiments, our approach largely outperforms
the classic GAN method. Some conclusions and directions of future research are discussed
in Section 5.

2. Main results

First, the construction of the proposed transformation of the quantile function is developed
and its approximation by a ReLU NN is then investigated.

2.1 TIF regularity

In this section, we discuss the construction and the extension of (3). The objective is to
build a tail-index function which may be well approximated by a neural network. Let X be
a real random variable and denote by FX its cumulative distribution function supposed to
be continuous and strictly increasing. We focus on the case of heavy-tailed distributions,
i.e. when FX is attracted to the maximum domain of Pareto-type distributions with tail-
index γ > 0. From Bingham et al. (1987), the survival function F̄X := 1 − FX of such a
heavy-tailed distribution can be expressed as

(H1): F̄X(x) = x−1/γ`X(x), where `X is a slowly-varying function at infinity i.e. such that
`X(λx)/`X(x)→ 1 as x→∞ for all λ > 0.

In such a case, F̄X is said to be regularly-varying with index −1/γ at infinity, which is de-
noted for short by F̄X ∈ RV−1/γ . The tail-index γ tunes the tail heaviness of the distribution
function FX . Assumption (H1) is recurrent in risk assessment, since actuarial and finan-
cial data are most of the time heavy-tailed, see for instance the recent studies Alm (2016);
Chavez-Demoulin et al. (2014) or the monographs Embrechts et al. (1997); Resnick (2007).
As a consequence of the above assumptions, the tail quantile function x 7→ qX(1 − 1/x)
is regularly-varying with index γ at infinity, see (de Haan and Ferreira, 2006, Proposi-
tion B.1.9.9), or, equivalently,

qX(u) = (1− u)−γL

(
1

1− u

)
, (7)

for all u ∈ (0, 1) with L a slowly-varying function at infinity. Without of loss of generality,
one can assume that η := P(X ≥ 1) 6= 0 and, since, we focus on the upper tail behavior of
X, introduce the random variable Y = X given X ≥ 1. It follows that quantile function of
Y is given by

qY (u) = qX(1− (1− u)η), (8)

for all u ∈ (0, 1). Finally, we consider the Tail-index function (TIF) obtained by plugging (8)
into (3):

fTIF(u) = −
log qX

(
1− (1− u)η

)
log(1− u2)− log 2

, (9)

for all u ∈ (0, 1). The next Proposition provides some preliminary properties of the above
TIF, see Figure 3 for an illustration on the Burr distribution defined in Table 4.
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Proposition 1 Under (H1), fTIF is a continuous and bounded function on [0, 1]. Besides,
fTIF(0) = 0 and fTIF(u)→ γ as u→ 1.
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(a) γ = 1/2 and ρ ∈ {−5,−1,−1/2}
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(b) ρ = −1 and γ ∈ {1/2, 1, 2}

Figure 3: Tail-index function u ∈ (0, 1) 7→ fTIF(u) associated with Burr distribution for dif-
ferent values of tail-index γ and second-order parameter ρ, see Table 4 for parameterization
details.

In contrast to the quantile function, the TIF is bounded on [0, 1]. We now focus on the
behavior of the first derivative of the TIF, which will appear to depend on an additional tail
parameter ρ, as it may be guessed from Figure 3. Extra assumptions on FX , or equivalently
on L, are necessary such that fTIF is differentiable. Consider the Karamata representation
of the slowly-varying function L (de Haan and Ferreira, 2006, Definition B1.6):

L(x) = c(x) exp

(∫ x

1

ε(t)

t
dt

)
, (10)

where c(x)→ c∞ as x→∞ and ε is a measurable function such that ε(x)→ 0 as x→∞.
Our second main assumption then writes:

(H2): c(x) = c∞ > 0 for all x ≥ 1 and ε(x) = xρ`(x) with ` ∈ RV0 and ρ < 0.

The assumption that c is a constant function is equivalent to assuming that L is normalized
(Kohlbecker, 1958) and ensures that L is differentiable. As noted in Bingham et al. (1987),
the normalization assumption is not restrictive since slowly-varying functions are of interest
only to within asymptotic equivalence. The condition ε ∈ RVρ with ρ < 0 entails that
L(x) → L∞ ∈ (0,∞) as x → ∞. The index of regular variation ρ is referred to as the
second-order parameter. It is the main driver of the bias in the estimation of extreme
quantiles from heavy-tailed distributions, see Table 4 for values of ρ associated with usual
distributions. Besides, (H2) entails that FX satisfies the so-called second-order condition
which is the cornerstone of all proofs of asymptotic normality in extreme-value statistics.
Interpretations and examples may be found in Beirlant et al. (2004) and de Haan and
Ferreira (2006). We also refer to Gardes and Girard (2010, 2012) where a similar assumption
is introduced in the framework of conditional extremes. Similarly, we shall also consider the
assumption:
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(H3): ` is normalized.

The latter condition ensures that ` is differentiable on (0, 1) and thus that L and qX are
twice differentiable on (0, 1). Our second result provides a precise expansion of the first
order derivative of fTIF in the neighborhood of 1.

Proposition 2 Assume (H1) and (H2) hold. Then, fTIF is continuously differentiable on
(0, 1) and

∂uf
TIF(0) =

γ + ε (1/η)

log(2)
,

∂uf
TIF(u) =

3∑
j=0

cjϕj(u)−
ε
(

1
(1−u)η

)
(1− u) log(1− u)

(1 + o(1)) +O
(

(1− u)

log(1− u)

)
, (11)

as u→ 1, where c0 = c3 = β, c1 = −γ/2, c2 = (γ − β)/2, β = γ log η − logL∞,

ϕ0(u) =
1

(1− u) (log(1− u))2 and ϕj(u) =
1

(log(1− u))j
, u ∈ (0, 1), j = 1, 2, 3.

Let us highlight that ϕ0(u)→∞ as u→ 1 making the first derivative of fTIF unbounded as
u→ 1, see Figure 4a for an illustration on the Burr distribution. In contrast, ϕj(u)→ 0 as
u→ 1 for all j ∈ {1, 2, 3} while the second term in (11) tends to 0 if ρ < −1 or tends to ∞
if ρ > −1. Moreover, it is readily seen that ∂uϕj(u)→∞ as u→ 1 for all j ∈ {0, . . . , 3}. As
a conclusion, in the case where ρ < −1, it is possible to build a twice differentiable version
of fTIF by removing the ϕj components, j ∈ {0, . . . , 3}, in the neighborhood of u = 1. To
this end, consider

fCTIF(u) := fTIF(u)− g(u)

3∑
j=0

cjΦj(u)− γg(u)− ∂ufTIF(0)h(u), (12)

with, for all u ∈ (0, 1),

g(u) = −4u5 + 5u4,

h(u) = u3 − 2u2 + u,

Φ0(u) = ϕ1(u),

Φ1(u) = − li(1− u),

Φ2(u) = Φ1(u) + (1− u)ϕ1(u),

Φ3(u) =
(

Φ1(u) + (1− u)(ϕ1(u) + ϕ2(u))
)
/2.

Here, li(·) denotes the logarithmic integral function defined as li(x) :=
∫ x

0
1

log(t) dt for all
0 < x < 1, with li(0) = 0 and li(x) → −∞ as x → 1. Let us remark that g(·) and
h(·) are two Hermite spline functions and that, by construction, ∂uΦj(u) = ϕj(u), for all
j ∈ {0, . . . , 3}. The second term in (12) thus aims at removing the singular components
in the first and second derivative of the TIF function in the neighborhood of u = 1. The
additional terms γg(u) and ∂fTIF(0)h(u) ensure that the TIF function as well as its first
derivative vanish at u = 0. Regularity properties of fCTIF are established in the next
Proposition and illustrated on Figure 4 in the case of a Burr distribution.
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Figure 4: Illustration of the regularity properties of TIF and CTIF on a Burr distribution
with γ = 1/2 and ρ ∈ {−3,−2,−1}. (a): First derivative of Tail index function ∂uf

TIF.
(b),(c),(d): Corrected tail-index function fCTIF (solid blue line) and its first two derivatives
∂uf

CTIF (dashed orange line) and ∂2
uuf

CTIF (dash-dot green line).

Proposition 3

(i) If (H1) holds, then

lim
u→0

fCTIF(u) = lim
u→1

fCTIF(u) = 0. (13)

(ii) If, moreover, (H2) holds with ρ < −1, then fCTIF is continuously differentiable on [0, 1]
and

lim
u→0

∂uf
CTIF(u) = lim

u→1
∂uf

CTIF(u) = 0. (14)

(iii) If, moreover, (H3) holds, then fCTIF is twice continuously differentiable on [0, 1) and

∂2
uuf

CTIF(u) = 20γ − 2

(
γ + ε(1/η)

log(2)

)
−

(1 + ρ)ε
(

1
η(1−u)

)
(1− u)2 log(1− u)

(1 + o(1)) +O
(

1

log(1− u)

)
,

(15)
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as u→ 1 and

lim
u→0

∂2
uuf

CTIF(u) =
5γ + ε(1/η)

(
5 + ρ+ 1

η
∂`(1/η)
`(1/η)

)
log(2)

− 5β. (16)

(iv) If, moreover, ρ < −2, then fCTIF is twice continuously differentiable on [0, 1] and

lim
u→1

∂2
uuf

CTIF(u) = 20γ − 2

(
γ + ε(1/η)

log(2)

)
. (17)

It appears on Figure 4b that for ρ = −1, property (13) holds while first and second deriva-
tives do not vanish at the boundaries of [0, 1]. When ρ = −2 (Figure 4c) both properties (13)
and (14) are satisfied while the second derivative converges to a finite value in the neigh-
borhood of 0, see (16), and diverges in the neighborhood of 1, see (15). Finally, ρ = −3
(Figure 4d) corresponds to the same situation, except that the second derivative also con-
verges in the neighborhood of 1, see (17).

Let I ⊂ R. Let us recall that a function f : I 7→ R is Hölder continous with exponent
α ∈ (0, 1] if the following quantity is finite

[f ]α := sup
x 6=y∈I

|f(x)− f(y)|
|x− y|α

.

This property is denoted for short by f ∈ Hα(I). The case α = 1 corresponds to Lipschitz
functions. We shall also note Cm(I) the set of m-th continuously differentiable functions
on I, m ∈ N. Finally, for all α ∈ (0, 1] and m ∈ N, we denote by Cm,α(I) the Hölder
space which consists of all functions f ∈ Cm(I) such that ∂mf ∈ Hα(I). In particular
Cm,1(I) ⊂ Cm+1(I). Using these notations, and focusing on the case where ρ < −1, the
regularity properties of fCTIF provided by Proposition 3 can be simplified as:

Corollary 4 Assume (H1), (H2) and (H3) hold.

(i) If −2 ≤ ρ < −1 then fCTIF ∈ C1,α([0, 1)) for all α ∈ (0,−1− ρ).

(ii) If ρ < −2 then fCTIF ∈ C2([0, 1]).

Let us note that higher regularities could be obtained at the price of further restrictions on
ρ. We are now in a position to investigate how a neural network can approximate such a
function.

2.2 Approximation error

Combining Corollary 4 and Lemma 13 in Appendix B provides the uniform approximation
error of fCTIF by a neural network depending on the number of ReLU functions:

Theorem 5 Assume (H1), (H2) and (H3) hold. Let σ be a ReLU function. For all J ≥ 6,
there exist (aj , wj , bj) ∈ R3, j = 1, . . . , J such that:

sup
u∈[0,1]

∣∣∣∣∣∣fCTIF(u)−
J∑
j=1

ajσ (wju+ bj)

∣∣∣∣∣∣ ≤ [∂tf
CTIF]α
4

⌈
J − 3

3

⌉−α−1

= O
(
J−α−1

)
where

10
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1. α ∈ (0,−1− ρ) if −2 ≤ ρ < −1,

2. α = 1 if ρ < −2.

In view of (12), letting e1(u) = g(u), e2(u) = h(u) and ek+3(u) = g(u)Φk(u) for k =
0, . . . , 3 in (4), the above approximation bounds on fCTIF can be translated in terms of
approximation bounds on fTIF using the “enriched” neural network. Moreover, it can be
done for all components of a d-dimensional random variable, by following the principle (6),
with a latent dimension d′≥d. We obtain the final approximation result which proof is now
an easy combination of previous results.

Corollary 6 Let σ be a ReLU function. Assume that X = (X(1), . . . , X(d))> is a d-
dimensional vector, which each component X(m) fulfilling (H1), (H2) and (H3) with some
parameters (γ(m), ρ(m)). Let GJ be the approximation space of TIF functions made of J
neurons (J ≥ 6):

GJ :=

{
G : z ∈ [0, 1]d

′ 7→ G(z) = (G(1)(z), . . . , G(d′)(z))>,

G(m)(z) =

J∑
j=1

a
(m)
j σ

(
d′∑
i=1

w
(i)
j z

(i) + bj

)
+

6∑
k=1

κ
(m)
k ek

(
z(m)

)
,

a
(m)
j , w

(i)
j , bj ,κ

(m)
k ∈ R

}
.

Then

inf
G∈GJ

sup
m=1,...,d

sup
z∈[0,1]d′

∣∣∣fTIF,(m)(z(m))−G(m)(z)
∣∣∣ = O

(
J−α−1

)
where

(i) α ∈ (0,−1−maxm=1,...,d ρ
(m)) if −2 ≤ ρ(m) < −1 for some m = 1, . . . , d,

(ii) α = 1 if ρ(m) < −2 for all m = 1, . . . , d.

Here we have written

fTIF,(m)(z(m)) = − log(qX(m)(1− (1− z(m))η(m)))

log
(

1−
(
z(m)

)2)− log 2

as an natural extension of (9). For optimal parameters a(m)
j , w

(i)
j , bj , κ

(m)
k , the generative

model for X is then

X̃ =H−1
Z(m)

(
G(m)(Z)

)
, Z

d
= U([0, 1]d

′
) (18)

where H−1
u (·) is defined in (5).

In the above, one could restrict G(m)(z) to depend only on the m-th coordinate of z:
it would not affect the potential quality of approximation of the m-th marginal of X but

11
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it would lead to a generative model with independent components which is too restrictive.
Mixing all latent components of z in G(m)(z) allows for generating dependence in the tails,
while ensuring good fit of the marginals, as it will be checked in the subsequent experiments.

Observe that the worst1 second-order parameter ρ(m) will tune the global accuracy of
the Tail-GAN through the convergence order α.

3. Validation on simulated data

3.1 Experimental design

The simulation of our synthetic data is based on the use of copulas, which allow to model
separately the dependence structure and the margins, see Appendix A for a short overview.
We focus on the Gumbel copula, denoted by CGµ which has been proved to be the only max-
stable Archimedean copula (Genest and Rivest, 1989). The associated generating function
is ψGµ (t) = exp(−t1/µ) defined for all µ ≥ 1 and t ≥ 0. It is easily seen that Kendall’s
dependence function is given by KCGµ

(t) = t − t log(t)/µ for all t ∈ (0, 1] and Kendall’s
tau is τCGµ = 1 − 1/µ. These two above quantities respectively provide a local and global
characterization of the dependence structure induced by the copula. Besides, CG1 = Π the
independence copula, and CGµ →M , the comotonic copula, as µ→∞. In our experiments,
three values of the dependence parameter are investigated: µ ∈ {1.1, 2, 10} leading to τCGµ ∈
{0.1, 0.5, 0.9}. In the remaining part of this section, we restrict ourselves to the dimension
d = 2, see Section 4 for illustrations in higher dimensions. The two margins are chosen to
be Burr distributed, with common tail-index γ := γ1 = γ2 ∈ {0.1, 0.5, 0.9} and second-order
parameters (ρ1, ρ2) ∈ {(−1,−2), (−1,−3), (−2,−3)}, see Table 4 for the parametrization
of the Burr distribution. Finally, n = 10, 000 data {X1, . . . , Xn} are simulated from the
resulting bivariate model for the above 3 × 3 × 3 = 27 combinations of parameters. In
the sequel, we will denote by {X̃1, . . . , X̃n} the outputs generated either by the Tail-GAN
model (18) or by the classic GAN.

The ranges of hyperparameters that we explored in order to find the best model for each
data configuration are reported in Table 1. Note that in order to respect the architecture (6),
the generator has been restricted to be a 1-hidden layer neural network. Additionally, we
used the optimizer Adam (Kingma and Ba, 2014) with default parameters β1 = 0.9 and
β2 = 0.999 for all tests performed during 1, 000 epochs (i.e. iterations).

3.2 Performance assessment

Recall that from (7), in the heavy-tail model, for all j ∈ {1, . . . , d}, log qX(j)(u) is ap-
proximatively proportional to log(1/(1 − u)) when u is close to 1, with the tail-index γ as
proportionality factor. It is therefore common practice to check the heavy-tail assumption
on each margin j ∈ {1, . . . , d} by drawing a log quantile-quantile plot, namely the points
(log((n+ 1)/i), logX

(j)
n−i+1,n), for i ∈ {1, . . . , d(1− ξ)ne}, where ξ ∈ [0, 1) is a given proba-

bility level. The performance of a generator can then be visually assessed by comparing the
pairs (log((n + 1)/i), logX

(j)
n−i+1,n) and (log((n + 1)/i), log X̃

(j)
n−i+1,n). To further quantify

the fit on the tails of the marginal distributions, we define the Sum squared logarithmic

1. the closest to −1

12
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Hyperparameters ranges

latent dimension batch size neurons G. learning rate G. hidden layers D. neurons D. learning rate D. training loop D.

[10, 100] [5− 64] [10, 500] [0.0001, 0.01] [1, 4] [10, 500] [0.0001, 0.01] [1, 5]

Selected hyperparameters on simulated data

latent dimension batch size neurons G. learning rate G. hidden layers D. neurons D. learning rate D. training loop D.

Tail-GAN 36 (13) 31 (18) 68 (54) 0.0004 (0.0004) 2 (0) 45 (39) 0.0004 (0.0004) 1 (0)

GAN 33 (12) 26 (16) 56 (30) 0.001 (0.0004) 2 (0) 42 (38) 0.001 (0.0004) 1 (0)

Selected hyperparameters on real data

latent dimension batch size neurons G. learning rate G. hidden layers D. neurons D. learning rate D. training loop D.

Tail-GAN 21 (9) 11 (9) 17 (9) 0.0004 (0.0004) 3 (0) 13 (4) 0.0006 (0.0004) 1 (0)

GAN 49 (33) 10 (4) 77 (78) 0.0001 (0) 2 (1) 64 (86) 0.0006 (0.0004) 1 (1)

Table 1: Top: Hyperparameters ranges used for tuning GANs across the experiments. Cen-
ter: Mean (standard deviation) of selected hyperpameters on simulated data according to
the SSLE(0.99) and AKE criteria. Bottom: Mean (standard deviation) of selected hyper-
pameters on real data according to the SSLE(0.95) and AKE criteria.

error (SSLE) as the squared distance between the logarithm of the original and generated
data:

SSLE(ξ) =
1

d

d∑
j=1

d(1−ξ)ne∑
i=1

(
log(X

(j)
n−i+1,n)− log(X̃

(j)
n−i+1,n)

)2
.

In the sequel, we consider ξ ∈ {0.90, 0.95, 0.99}. Considering the dependence structure,
one may also graphically compare the estimated Kendall’s dependence functions K (or
equivalently the t 7→ λ(t) := t−K(t) functions) associated with the original sample and the
generated one. From the quantitative point of view, the fit of the dependence structure is
assessed by the 1-Wasserstein distance between these two Kendall’s dependence functions
which indeed are cumulative distribution functions. The distance can be computed as a L1

norm referred to as the Absolute Kendall error (AKE) in the sequel:

AKE =
1

n

n∑
i=1

∣∣∣Zi,n − Z̃i,n∣∣∣ ,
where Z1,n ≤ · · · ≤ Zn,n (resp. Z̃1,n ≤ · · · ≤ Z̃n,n) are the order statistics associated with
{Z1, . . . , Zn} (resp. {Z̃1, . . . , Z̃n}) and the Z̃i are computed similarly to (19) in Appendix A
on the generated sample. We shall also compare Kendall’s tau estimated on the original
sample τ̂n, on the generated sample τ̃n and the theoretical value τCGµ .

3.3 Computational aspects

The numerical experiments presented in the next two sections have been conducted on the
Cholesky computing cluster from Ecole Polytechnique http://meso-ipp.gitlab.labos.
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SSLE(0.99)

γ
(ρ1, ρ2)

µ 1.1 2 10

0.1
(−1,−2) 0.895 0.116 0.545 0.097 0.232 0.037
(−1,−3) 0.923 0.103 0.732 0.082 0.553 0.143
(−2,−3) 0.677 0.190 0.836 0.083 0.700 0.174

0.5
(−1,−2) 3.576 1.058 10.673 1.006 2.567 1.321
(−1,−3) 1.943 0.958 6.913 1.569 3.812 3.252
(−2,−3) 10.809 1.707 10.157 1.201 1.306 1.195

0.9
(−1,−2) 47.742 4.966 55.360 6.473 57.186 8.651
(−1,−3) 44.949 3.129 51.294 4.573 45.900 3.205
(−2,−3) 68.438 3.860 36.304 6.390 44.814 5.922

AKE

γ
(ρ1, ρ2)

µ 1.1 2 10

0.1
(−1,−2) 3.122 2.865 7.385 8.322 2.807 2.855
(−1,−3) 3.102 2.293 5.671 6.958 1.585 2.415
(−2,−3) 2.519 3.244 4.596 7.125 1.823 2.340

0.5
(−1,−2) 3.052 2.234 4.857 1.772 2.265 2.015
(−1,−3) 6.261 2.342 4.538 1.665 2.616 1.301
(−2,−3) 5.772 2.134 12.277 1.408 4.245 1.922

0.9
(−1,−2) 2.555 2.103 5.030 1.990 2.567 1.932
(−1,−3) 3.788 1.861 8.034 1.700 1.623 1.429
(−2,−3) 3.611 1.696 5.632 1.788 1.991 1.181

Kendall’s tau

γ
(ρ1, ρ2)

µ (τCθµ)
1.1 (0.1) 2 (0.5) 10 (0.9)

0.1
(−1,−2) 0.092 0.091 0.514 0.531 0.905 0.895
(−1,−3) 0.093 0.083 0.477 0.500 0.900 0.905
(−2,−3) 0.086 0.083 0.511 0.480 0.899 0.903

0.5
(−1,−2) 0.090 0.088 0.493 0.500 0.903 0.900
(−1,−3) 0.106 0.096 0.506 0.502 0.901 0.900
(−2,−3) 0.093 0.087 0.473 0.502 0.885 0.898

0.9
(−1,−2) 0.088 0.090 0.500 0.503 0.903 0.901
(−1,−3) 0.091 0.088 0.484 0.499 0.899 0.897
(−2,−3) 0.073 0.089 0.487 0.498 0.900 0.900

Table 2: Comparison between the best GAN and Tail-GAN (in bold) results on simulated
data for the 27 combinations of parameters. Top: SSLE criterion at level ξ = 0.99, center:
AKE criterion (the results are scaled by 103 for the sake of readability), bottom: Kendall’s
tau (using the same models as the ones based on the AKE criterion).
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(a) First margin (γ = 0.9, ρ1 = −1)
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(b) Second margin (γ = 0.9, ρ2 = −3)
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(c) Estimated λ(·) functions

Figure 5: Top: log quantile-quantile plots on simulated data at probability level ξ = 0.99.
The estimated regression lines are superimposed to each scatter plot. The associated slope
is an estimation of the tail-index γ. Bottom: estimated λ(·) functions. Black: original
simulated data (γ = 0.9 , ρ1 = −1, ρ2 = −3 and µ = 10), blue: data generated with
Tail-GAN model, orange: data generated with classic GAN model.

polytechnique.fr/user_doc/. It is composed by 2 nodes, where each one includes 2 CPU
Intel Xeon Gold 6230 @ 2.1GHz, 20 cores and 4 Nvidia Tesla v100 graphics card. All the
code was implemented in Python 3.8.2 and using the library PyTorch 1.7.1 for the GANs’
training.

3.4 Results

Both GAN and Tail-GAN are trained on each of the 27 simulated datasets independently
during the 1, 000 iterations with various neural network hyperparameter tunings listed in
Table 1. Every 5 iterations, two metrics are computed and the best results among the 200
checkpoints are used as a model selection technique for each metric. The first one is the
SSLE at level ξ = 0.99 and the best results are recorded on the upper panel of Table 2. The
second one is the AKE criterion with all data (ξ = 0) and the best results are recorded on
the middle panel of Table 2. The associated Kendall’s tau is also reported on the bottom
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panel of Table 2. Information on the selected hyperparameters on the simulated data is
provided in Table 1.

When the tail-index γ increases, the tails of the marginal distributions of the simulated
get heavier and the SSLE criteria of GAN and Tail-GAN methods increase for all considered
values of (ρ1, ρ2, µ) with a clear soaring when γ = 1. In this latter case, the expectation of the
simulated distribution does not exist. However, from this marginal point of view, Tail-GAN
outperforms GAN in terms of SSLE for all considered configurations of (γ, ρ1, ρ2, µ). This
conclusion remains true from the dependence point of view: Tail-GAN outperforms GAN in
terms of AKE for all the considered configurations of (ρ1, ρ2, µ) when γ ∈ {0.5, 0.9}. This
phenomenon is illustrated in Figure 5 in the case where γ = 0.9, ρ1 = −1, ρ2 = −3 and
µ = 10. The log quantile-quantile plots associated with both margins are displayed on the
top panel. It is easily seen that GAN method is not able to generate data in the distribution
tail since the tail heaviness is strongly underestimated. This common phenomenon in GAN
training is called mode-collapse, which appears when both the generator and the discrimi-
nator overfit the data. This entails a very small diversification of the generator’s outputs.
At the opposite, Tail-GAN method yields realistic data generation in both marginal tail
distributions. Note that, in this case, the dependence structure is well captured by both
neural networks, see the estimated λ(·) functions on the bottom panel.

Finally, it appears on Table 2 that Kendall’s tau is not a sufficient summary of the
dependence structure: All estimated Kendall’s tau are close to the theoretical ones even
though the AKE is large. This criterion is thus dropped in the real data analysis hereafter
since it might lead to misleading conclusions.

4. Illustration on real financial data

Our approach is tested on closing prices of daily financial indices taken from https://stooq.
com/db/h/ on the 10/01/2020. This database includes 61 world indices from their first day
of quotation. Here, we selected 6 indices: NKX (Nikkei, Japan), KOSPI (Korea), HSI
(Hong-Kong), CAC (France), AMX (Amsterdam Exchange, Netherlands), Nasdaq (USA)
from 3 market zones: Asia, Europe, USA.

As a pre-processing step, the daily log-returns are computed for each ticker index. In
case of missing data at a given business day, the next available day is removed from the
dataset. Also, since we are interested in the modeling of synchronous indices, we kept only
the data available at the same date for all selected 6 tickers. Finally, positive returns were
discarded since we focus on the generation of losses.

Figure 6 proposes a graphical summary of the tail and dependence properties associated
with this dataset. First, the log quantile-quantile plots computed on all indices at level
ξ = 0.95 are approximately linear which provides a graphical evidence of the tail heaviness
of all six marginal distributions, with estimated slopes pointing towards a tail-index γ ' 0.3.
Second, the λ(·) associated with all 15 pairs of indices are also displayed together with the
two extreme cases λΠ(·) and λM (·). The strongest dependence is found within the European
market zone (pair AMX,CAC) while weakest dependences are located between US and Asian
market zones. Let us however note that the dependence between Asian, European and US
markets may be under-estimated due to different time zones.
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In the following, the performance of GAN and Tail-GAN approaches are compared on
four datasets of increasing dimensions: NKX, Europe (AEX, CAC), Asia (NKX, KOSPI,
HSI) and world (AEX, CAC, NKX, KOSPI, HSI, NDQ). The training procedure described
in Section 3 is adopted and results are reported in Table 3. Tail-GAN outperforms GAN
both on tail criteria SSLE(ξ), ξ ∈ {0.90, 0.95, 0.99} and on dependence criterion AKE. These
results are illustrated on Figure 7 where it appears that Tail-GAN is able to generate financial
indices with realistic marginal tail behaviors. Finally, Figure 8 provides a comparison of
dependence results obtained either using the SSLE or the AKE criteria. Unsurprisingly, the
latter yields better results. Here again, the results associated with Tail-GAN are visually
more satisfying than those of the classic GAN. Information on the selected hyperparameters
on the real data is provided in Table 1.

ticker NKX Europe Asia World
dimension d 1 2 3 6
sample size n 3173 2504 1378 548
SSLE(0.90) 1.500 0.421 9.651 0.330 3.223 0.927 1.785 0.472

SSLE(0.95) 1.173 0.163 6.156 0.222 1.007 0.394 1.206 0.329

SSLE(0.99) 0.428 0.062 0.698 0.080 0.133 0.070 0.250 0.098

AKE − − 16.807 4.697 9.760 4.872 24.781 3.533

Table 3: Performance comparaison between the best GAN and the Tail-GAN (in bold)
results on real data using the SSLE(ξ) criteria computed at levels ξ ∈ {0.90, 0.95, 0.99} and
the AKE criterion (results are multiplied by 103 for the sake of readability).

5. Conclusion

In this work, we have introduced a new generative method called Tail-GAN dedicated to
extreme events. It relies on a new parametrization of GANs allowing to generate data
coming from a heavy-tailed distribution. From the theoretical point of view, the uniform
convergence rate of the proposed transformed quantile function fTIF by a one hidden-layer
ReLU neural network is established within an extreme-value framework. From the practical
point of view, we have illustrated on real and simulated data that Tail-GAN outperforms
classic GAN both in terms of tail behavior of the marginal distributions and in terms of
dependence structure.

To complete the current theoretical analysis which ensures accurate approximation of
marginals using NN, our further work will be dedicated to investigate mathematically how
dependence structure is preserved, leveraging multivariate extreme-value theory. The anal-
ysis goes far beyond this work since it is known that dependence structure in the tails can
be quite different from one case to another (Coles et al., 1999).
Finally, we shall investigate the behaviour of the proposed Tail-GAN corrections in other
GAN architectures, using different distances and alternative criteria to LSSE and AKE.
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Figure 6: Top panels: Log quantile-quantile plots on the 6 selected financial indices at
probability level ξ = 0.95. The estimated regression line is superimposed to each scatter
plot. The associated slope is an estimation of the tail-index. Bottom panel: Estimated λ(·)
functions for all 15 pairs of indices. Functions λΠ(t) = t log t and λM (t) = 0 respectively
associated to independence and comotonic dependence in the bivariate case (d = 2) are
depicted by black dashed lines.
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Figure 7: Log quantile-quantile plots associated with the world market zone at probability
level ξ = 0.95.
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Figure 8: Estimated λ(·) functions associated with the World market zone (d = 6). Black:
original real data, blue: data generated with Tail-GAN model, orange: data generated with
classic GAN model. (a) AKE criterion, (b) SSLE(0.95) criterion.

Distribution (parameters) Density function γ ρ

Pareto (α > 0) αt−α−1 (t > 1) 1/α −∞

Burr (α, β > 0) αβtα−1 (1 + tα)−β−1 (t > 0) 1/(αβ) −1/β

Fréchet (α > 0) αt−α−1 exp (−t−α) (t > 0) 1/α −1

Fisher (ν1, ν2 > 0)
(ν1/ν2)ν1/2

B(ν1/2, ν2/2)
tν1/2−1(1 + ν1t/ν2)−(ν1+ν2)/2 (t > 0) 2/ν2 −2/ν2

Inverse-Gamma (α, β > 0)
βα

Γ(α)
t−α−1 exp(−β/t) (t > 0) 1/α −1/α

Cauchy (σ > 0)
σ

π(σ2 + t2)
1 −2

Student (ν > 0)
1√
νπ

Γ
(
ν+1

2

)
Γ
(
ν
2

) (
1 +

t2

ν

)− ν+1
2

1/ν −2/ν

Table 4: A list of heavy-tailed distributions with the associated values of γ and ρ.
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Appendix A collects some statistical tools based on copulas used in experiments (Section 3
and Section 4). Appendix B provides auxiliary results used in Appendix C to prove the
main results of Section 2.

Appendix A. Copulas

Let us consider a d− variate cumulative distribution function FX with continuous margins
denoted by F (j)

X , j ∈ {1, . . . , d}. From Sklar’s Theorem (Sklar, 1959), there exists a unique
function C such that

FX

(
x(1), . . . , x(d)

)
= C

(
F

(1)
X (x(1)), . . . , F

(d)
X (x(d))

)
,

with
(
x(1), . . . , x(d)

)
∈ Rd. The function C is called the copula of FX . Introducing the uni-

form random variables U (j) = F (j)(X(j)) for all j ∈ {1, . . . , d}, the copula C is the d− dimen-
sional distribution function of the random vector

(
U (1), . . . , U (d)

)
with uniform margins on

[0, 1]. Copulas are a flexible tool to impose a given dependence structure on the marginal dis-
tributions of interest, see (Nelsen, 2006) for a detailed account on copulas. The independence
between margins corresponds to the product copula Π(u(1), . . . , u(d)) = u(1) . . . u(d) while co-
motonic dependence corresponds to the Fréchet copulaM(u(1), . . . , u(d)) = min(u(1), . . . , u(d)).

Archimedean copulas. An Archimedean copula Cµ is defined for all (u(1), . . . , u(d)) ∈
[0, 1]d by

Cµ

(
u(1), . . . , u(d)

)
= ψµ

(
ψ−1
µ (u(1)) + · · ·+ ψ−1

µ (u(d))
)
,

where ψµ : [0,∞) → [0, 1] is a parametric function which has to verify certain properties
listed for instance in (McNeil and Nešlehová, 2009).

Kendall’s dependence function. Kendall’s dependence function (Genest and Rivest,
1993) characterizes the dependence structure associated with a copula C and is the univariate
cumulative distribution function defined by KC(t) = P

(
C
(
U (1), . . . , U (d)

)
≤ t
)
for all t ∈

[0, 1]. In the case of an Archimedean copula Cµ, it can be derived as (Garcin et al., 2018):

KCµ(t) = t+

d−1∑
j=1

(−ψ−1
µ (t))j

j!
ψ(j)
µ (ψ−1

µ (t)),

and we shall thus consider λCµ(t) := t − KCµ(t). It is then easily seen that, when d = 2,
λM (t) = 0 and λΠ(t) = t log(t) for all t ∈ (0, 1].
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Kendall’s tau (bivariate case). Kendall’s tau (Kendall, 1938) is a measure of depen-
dence between two random variables. Let us then assume d = 2 and let X and X̃ be two
bivariate random vectors from FX . Kendall’s tau is defined as the probability of concordance
minus the probability of discordance of X = (X(1), X(2)) and X̃ = (X̃(1), X̃(2)). It can be
shown (Nelsen, 2006, Theorem 5.1.3) that this quantity only depends on the copula C of
FX and is given by

τC = 4E
[
C(U (1), U (2))

]
− 1 = 4

∫ 1

0

∫ 1

0
C(u, v) dC(u, v)− 1,

with τM = 1 and τΠ = 0 as special cases. In case of an Archimedean copula Cµ, Kendall’s
tau and Kendall’s dependence functions are linked (Genest and MacKay, 1986):

τCµ = 1 + 4

∫ 1

0
λCµ(v) dv,

meaning that τCµ can be interpreted as a summary of the dependence information encoded
in λCµ(·).

Sampling (bivariate case). Sampling a random pair (U, V ) from a bivariate copula C
can be achieved by first simulating (U,W ) ∼ U([0, 1]2) and then letting V = C−1

u (W ) where
Cu is the conditional copula defined by

Cu(v) = P(V ≤ v|U = u) = ∂uC(u, v).

In the case of bivariate Archimedean copulas, the conditional copula and its inverse are
given by (Bernard and Czado, 2015):

Cµ,u(v) =
ψ−1
µ (u)

∂uψµ(C(u, v))
,

C−1
µ,u(y) = ψ−1

µ

(
ψµ

(
(∂uψµ)−1

(
∂uψµ(u)

y

))
− ψµ(u)

)
.

We also refer to Wu et al. (2007) and Hofert (2008) for alternative methods based on
Kendall’s dependence function and Laplace transform respectively.

Inference. The estimation of Kendall’s dependence function is based on the pseudo-
observations {Z1, . . . , Zn} from the cumulative distribution function K and computed as

Zi =
1

n− 1

n∑
j 6=i

1

{
X

(1)
j < X

(1)
i , . . . , X

(d)
j < X

(d)
i

}
, (19)

for all i ∈ {1, . . . , n}, see (Genest and Rivest, 1993). The estimator of K is computed using
the associated empirical cumulative distribution function:

K̂n(t) =
1

n

n∑
i=1

1 {Zi ≤ t} ,

and we set λ̂n(t) = t− K̂n(t), for all t ∈ [0, 1]. Similarly, Kendall’s tau is estimated by

τ̂n =
4

n

n∑
i=1

Zi − 1.
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Appendix B. Auxiliary results

We begin with a constructive proof of a particular case of Kuratowski Theorem (Bertsekas
and Shreve, 1978, Chapter 7)-(Villani, 2009, p.8).

Lemma 7 Let X be a random variable on Rd. There exists a mesurable function G :

(0, 1)→ Rd such that X d
= G(U) with U ∼ U([0, 1]).

Proof Let C : Rd → (0, 1)d be the component-wise logistic bijective function defined as
C(m)(x) = 1/(1 + exp(−x(m))) for all m ∈ {1, . . . , d}. Let us also consider the continuous
bijection S : [0, 1] → [0, 1]d associated with the Space filling curve (Peano, 1890; Hilbert,
1891). Then, k := S−1 ◦ C is a continuous bijection from Rd to (0, 1). Additionally, let
Y := k(X) be a random variable on (0, 1) with cumulative distribution function FY so that
F−1
Y (U)

d
= Y , set G(u) = k−1

(
F−1
Y (u)

)
, for all u ∈ (0, 1). Then, for any bounded test

function ϕ : (0, 1)→ Rd we get

E [ϕ(G(U))] = E
[
ϕ
(
k−1

(
F−1
Y (U)

))]
= E

[
ϕ
(
k−1(Y )

)]
= E [ϕ(X)] ,

which proves that X d
= G(U).

The following three lemmas provide asymptotic expansions that will reveal useful to establish
the behavior of the TIF function as well as its derivatives in the neighbourhood of u = 0
and u = 1.

Lemma 8

(i) The following asymptotic expansions hold, as u→ 1:

1

log
(

1−u2
2

) =
1

log(1− u)
+

1− u
2 (log(1− u))2 +O

(
(1− u)2

(log(1− u))2

)
, (20)

∂u

 1

log
(

1−u2
2

)
 =

1

(1− u) (log(1− u))2 −
1

2 (log(1− u))2 +
1

(log(1− u))3

+O
(

(1− u)

(log(1− u))2

)
, (21)

∂2
uu

 1

log
(

1−u2
2

)
 =

1

(1− u)2 (log(1− u))2 +
2

(1− u)2 (log(1− u))3

− 1

(1− u) (log(1− u))3 +
3

(1− u) (log(1− u))4

+
1

4 (log(1− u))2 +O
(

1

(log(1− u))3

)
. (22)

(ii) Assume (H1) and (H2) hold. Then,

qY (u) = η−γ(1− u)−γL

(
1

(1− u)η

)
, (23)
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∂uqY (u) = η−γ(1− u)−(γ+1)L

(
1

(1− u)η

)(
γ + ε

(
1

(1− u)η

))
, (24)

log qY (u) = −γ log(1− u)− β +
1

ρ
ε

(
1

(1− u)η

)(
1 + o(1)

)
, as u→ 1, (25)

∂u log qY (u) = (1− u)−1

(
γ + ε

(
1

(1− u)η

))
. (26)

(iii) Assume (H1), (H2) and (H3) hold. Then, as u→ 1,

∂2
uuqY (u) = η−γ(1− u)−(γ+2)L

(
1

(1− u)η

)
×

[
γ2 + γ + (1 + 2γ + ρ+ o(1))ε

(
1

(1− u)η

)]
, (27)

∂2
uu log qY (u) = (1− u)−2

(
γ + ε

(
1

(1− u)η

)
(1 + ρ+ o(1))

)
. (28)

Proof (i) The proof of (20)–(22) is straightforward but requires tedious calculations which
can be checked by a formal calculation software (using sympy in Python for instance, see
below). Details are omitted here.

import sympy as spy
u = spy.symbols(’u’)

f = 1 / spy.log((1 - u ** 2) / 2)

# series as u->1
f.series(u, 1, 2, dir="-")

f_first = spy.diff(f, u)
f_first.series(u, 1, 1, dir="-")

f_second = spy.diff(f_first, u)
f_second.series(u, 1, 1, dir="-")

(ii) Under (H1), Equations (7), (8) and (10) entail

qY (u) = η−γ(1− u)−γL

(
1

(1− u)η

)
,

which proves (23) and moreover, owing to (H2),

log qY (u) = −γ log(1− u) + log(c∞)− γ log η +

∫ 1
(1−u)η

1

ε(t)

t
dt. (29)

By differentiating, we get

∂uqY (u)= qY (u)× ∂u(log qY (u)) = η−γ(1− u)−(γ+1)L

(
1

(1− u)η

)(
γ + ε

(
1

(1− u)η

))
,
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and (24) is proved. Now, t 7→ ε(t)/t is regularly varying with index ρ − 1 < −1 and thus,∫∞
1 ε(t)/tdt is finite leading to:

logL∞ = log c∞ +

∫ ∞
1

ε(t)

t
dt.

Replacing in (29) yields:

log qY (u) = −γ log(1− u)− β −
∫ ∞

1
(1−u)η

ε(t)

t
dt.

Moreover, Karamata’s theorem (de Haan and Ferreira, 2006, Equation (B.1.9)) states that∫ ∞
x

ε(t)

t
dt = −1

ρ
ε(x)(1 + o(1)),

as x→∞ so that (25) is proved. Finally, (26) is a direct consequence of (23) and (24).

(iii) From (24), letting U(u) = η−γ(1− u)−(γ+1)L
(

1
(1−u)η

)
, one has

∂2
uuqY (u) = ∂u

[
U(u)

(
γ + ε

(
1

(1− u)η

))]
. (30)

Using the form of L under (H2) and x∂xL(x)
L(x) = ε(x), we obtain

∂uU(u) = η−γ(1− u)−(γ+2)L

(
1

(1− u)η

)(
γ + 1 + ε

(
1

(1− u)η

))
. (31)

In addition, recalling that ε is differentiable under (H3) yields

∂u

[
ε

(
1

(1− u)η

)]
= η−ρ(1− u)−(ρ+1)`

(
1

(1− u)η

)ρ+
1

(1− u)η

∂`
(

1
(1−u)η

)
`
(

1
(1−u)η

)


=
1

(1− u)
ε

(
1

(1− u)η

)ρ+
1

(1− u)η

∂`
(

1
(1−u)η

)
`
(

1
(1−u)η

)
 (32)

=
1

(1− u)
ε

(
1

(1− u)η

)
(ρ+ o(1)) . (33)

Collecting (30), (31) and (33) entails

∂2
uuqY (u) = η−γ(1− u)−(γ+2)L

(
1

(1− u)η

)
×

[(
γ + ε

(
1

(1− u)η

))2

+ γ + (1 + ρ+ o(1))ε

(
1

(1− u)η

)]

= η−γ(1− u)−(γ+2)L

(
1

(1− u)η

)
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×

[
γ2 + γ + (1 + 2γ + ρ+ o(1))ε

(
1

(1− u)η

)]
which proves (27). Finally, (26) and (32) entail

∂2
uu log qY (u) = (1− u)−2

(
γ + ε

(
1

(1− u)η

))

+ (1− u)−2ε

(
1

(1− u)η

)ρ+
1

(1− u)η

∂`
(

1
(1−u)η

)
`
(

1
(1−u)η

)
 (34)

and (28) is proved owing to (H3).

Lemma 9 Let li be the logarithmic integral function defined for all u ∈ (0, 1) as

li(u) =

∫ u

0

1

log(t)
dt.

Then, for any p > 0, up li(1− u)→ 0 as u→ 0.

Proof This stems from the convexity inequality log(1/t) ≥ 1− t for t ∈ (0, 1].

Lemma 10 For all u ∈ (0, 1), let Φ(u) =
∑3

j=0 cjΦj(u). One has:

∂2
uu [g(u) (γ + Φ(u))] = −20γ +

c0

(1− u)2 (log(1− u))2 +
2c0

(1− u)2 (log(1− u))3

+
c1

(1− u) (log(1− u))2 +
2c2

(1− u) (log(1− u))3 +
3c3

(1− u) (log(1− u))4

+O
(

1

log(1− u)

)
, as u→ 1, (35)

∂2
uu [g(u) (γ + Φ(u))]→ 5β, as u→ 0. (36)

Proof Differentiating Φ yields for all u ∈ (0, 1),

∂uΦ(u) =
3∑
j=0

cjϕj(u),

∂2
uuΦ(u) =

c0

(1− u)2 (log(1− u))2 +
2c0

(1− u)2 (log(1− u))3 +
c1

(1− u) (log(1− u))2

+
2c2

(1− u) (log(1− u))3 +
3c3

(1− u) (log(1− u))4 .

Besides, for all u ∈ (0, 1),

∂2
uu [g(u) (γ + Φ(u))] = 20u2 (3− 4u) (γ + Φ(u)) + 40u3 (1− u) ∂uΦ(u)
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+ u4 (5− 4u) ∂2
uuΦ(u). (37)

Remarking that Φ(u) = O (1/log(1− u)) and (1 − u)∂uΦ(u) = O
(

1/(log(1− u))2
)

as
u → 1 proves (35). Similarly, Lemma 9 entails that li(1− u) = O (1/u) as u → 0 and thus
Φ(u) = c3/(2u

2)(1 + o(1)), ∂uΦ(u) = −c3/u
3(1 + o(1)) and ∂2

uuΦ(u) = 3c3/u
4(1 + o(1)) as

u→ 0. Replacing in (37) and taking the limit as u→ 0 gives (36).

The next Lemma provides a sufficient condition for a given function to belong to C0,α([0, 1]).

Lemma 11 Let g : [0, 1] → R be a continuous function on [0, 1] and differentiable on
(0, 1) such that |∂ug(u)| ≤ Cuα−1 for all u ∈ (0, 1) with 0 < α ≤ 1 and C > 0. Then,
g ∈ C0,α([0, 1]).

Proof Let 0 ≤ a < b ≤ 1, then

|g(b)− g(a)| ≤
∫ b

a
Cxα−1 dx≤

∫ b

a
C(x− a)α−1 dx =

C

α
(b− a)α,

and the conclusion follows.

Our goal here is to study the uniform convergence rate of the approximation error of a
C1,α ([0, 1]) or C2([0, 1]) function f by a neural network. To this end, consider a triangular
function σ̂ : R → [0, 1] built using three translated ReLU functions x ∈ R 7→ σ(x) :=
max(0, x):

σ̂(t) := σ(t+ 1)− 2σ(t) + σ(t− 1) =


1, if t = 0,

1 + t, if − 1 < t < 0,

1− t, if 0 < t < 1,

0, otherwise.

It is then possible to control the uniform error between the function f and its piecewise
linear approximation based on triangular functions, depending on the regularity of f .

Lemma 12 Let σ̂ be a triangular function and f : [0, 1] → R. For all M ∈ N\{0}, let
δ = 1/M and tj = j/M for j = 0, . . . ,M . If f ∈ C1,α ([0, 1]) with α ∈ (0, 1], then

sup
t∈[0,1]

∣∣∣∣∣∣f(t)−
M∑
j=0

f(tj)σ̂

(
t− tj
δ

)∣∣∣∣∣∣ ≤ [∂tf ]α
4

M−α−1. (38)

Proof Clearly,

sup
t∈[0,1]

∣∣∣∣∣∣f(t)−
M∑
j=0

f(tj)σ̂

(
t− tj
δ

)∣∣∣∣∣∣ =: max
i=0,...,M−1

sup
t∈[ti,ti+1]

|∆i(t)| ,

where
∆i(t) := f(t)−

(
f(ti)

(
ti+1 − t

δ

)
+ f(ti+1)

(
t− ti
δ

))
.
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Two first order Taylor expansions yield that there exist t′i ∈ (ti, t) and t′′i ∈ (t, ti+1) such
that

∆i(t) = f(t)−
[(
f(t) + ∂tf(t′i)(ti − t)

)( ti+1 − t
δ

)
+
(
f(t) + ∂tf(t′′i )(ti+1 − t)

)( t− ti
δ

)]
=

(ti+1 − t)(t− ti)
δ

(
∂tf(t′i)− ∂tf(t′′i )

)
.

Remarking (ti+1 − t)(t− ti) is maximum on [ti, ti+1] at t = (ti+1 + ti)/2 entails

|∆i(t)| ≤
δ

4

∣∣∂tf(t′i)− ∂tf(t′′i )
∣∣ ≤ δ

4
[∂tf ]α(t′′i − t′i)α ≤

1

4
[∂tf ]αδ

α+1,

and the result is proved.

Finally, one can determine the minimum number J(ε) of ReLU functions to approximate f
with a given precision ε. The above construction in Lemma 12 involves (M + 1) triangular
functions corresponding to J = 3(M + 1) ReLU functions. Fixing bound (38) to ε provides
M as a function of ε, and we obtain:

Lemma 13 Let σ be a ReLU function and f : [0, 1] → R. For all ε > 0, let J(ε) =
3(M(ε) + 1) with M(ε) ∈ N such that

M(ε) ≥
(

[∂tf ]α
4ε

)1/(α+1)

,

if f ∈ C1,α ([0, 1]) with α ∈ (0, 1]. Then, there exist (aj , wj , bj) ∈ R3, j = 1, . . . , J(ε) such
that

sup
t∈[0,1]

∣∣∣∣∣∣f(t)−
J(ε)∑
j=1

ajσ (wjt+ bj)

∣∣∣∣∣∣ ≤ ε.
Appendix C. Proof of main results

Proof of Proposition 1. The continuity of fTIF on (0, 1) is a consequence of the assump-
tions on FX . Besides, qX(1− η) = 1 and thus

fTIF(0) = log(qX(1− η))/ log 2 = 0.

From (H1), the cumulative distribution function FX has an unbounded right-hand support,
and thus, from (8), qY (u)→∞ as u→ 1. Thus, replacing in (7) and taking the log yields

log qY (u) = −γ log
(
(1− u)η

)1−
logL

(
1

(1−u)η

)
γ log ((1− u)η)

 .

Since L is slowly varying, logL(v)/log v → 0 as v → ∞ (Bingham et al., 1987, Proposi-
tion 1.3.6) and then,

log qY (u) = −γ log(1− u)(1 + o(1)), as u→ 1.
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Similarly, as u→ 1, log
(

1−u2
2

)
= log(1−u)(1+o(1)), which leads to fTIF(u)→ γ as u→ 1.

Finally, fTIF is bounded on [0, 1] and the conclusion follows.

Proof of Proposition 2. First, qY (0) = 1 directly yields

∂uf
TIF(0) =

γ + ε (1/η)

log(2)
.

Second, collecting (20) and (26), it follows, as u→ 1,

∂u log qY (u)

log
(

1−u2
2

) =
γ

(1− u) log(1− u)
+

γ

2 (log(1− u))2 +
ε
(

1
(1−u)η

)
(1− u) log(1− u)

+O
(

(1− u)

(log(1− u))2

)

=
γ

(1− u) log(1− u)
+
γ

2
ϕ2(u) +

ε
(

1
(1−u)η

)
(1− u) log(1− u)

+O
(

(1− u)

(log(1− u))2

)
.

In addition, from (21) and (25), we have, as u→ 1,

log qY (u)∂u

 1

log
(

1−u2
2

)
 =

−γ
(1− u) log(1− u)

− β

(1− u) (log(1− u))2 +
γ

2 log(1− u)

− (2γ − β)

2 (log(1− u))2 −
β

(log(1− u))3 +
ε
(

1
(1−u)η

)
(1 + o(1))

ρ(1− u) (log(1− u))2

+O
(

(1− u)

log(1− u)

)
=

−γ
(1− u) log(1− u)

− βϕ0(u) +
γ

2
ϕ1(u)− (2γ − β)

2
ϕ2(u) + βϕ3(u)

+
ε
(

1
(1−u)η

)
(1 + o(1))

ρ(1− u) (log(1− u))2 +O
(

(1− u)

log(1− u)

)
.

Summing up the two above expansions and inverting the signs yield

∂uf
TIF(u) = βϕ0(u)− γ

2
ϕ1(u) +

γ − β
2

ϕ2(u) + βϕ3(u)

−
ε
(

1
(1−u)η

)
(1− u) log(1− u)

(
1 +

1

ρ log(1− u)
(1 + o(1))

)
+O

(
(1− u)

log(1− u)

)
,

which proves the result.

Proof of Proposition 3. For all u ∈ (0, 1), let Φ(u) =
∑3

j=0 cjΦj(u).
(i) First, note that Φ(u) → 0 as u → 1, h(1) = 0 and g(1) = 1. Besides, Proposition 1
shows that fTIF(u)→ γ as u→ 1 and therefore fCTIF(u)→ 0 as u→ 1. Second, Lemma 9
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entails that li(1 − u) = O (1/u) as u → 0 and thus Φ(u) = c3/(2u
2)(1 + o(1)). It follows

that g(u)Φ(u)→ 0 as u→ 0. Clearly, one also has g(0) = h(0) = 0. Besides, Proposition 1
shows that fTIF(0) = 0 and therefore fCTIF(u)→ 0 as u→ 0.
(ii) First, differentiating (12) and taking account of g′(1) = h′(1) = 0, Φ(u) → 0 as u → 1
yields

∂uf
CTIF(u) = ∂uf

TIF(u)− ∂uΦ(u)g(u) + o(1) = ∂uΦ(u) (1− g(u)) + o(1),

as u → 1, since ∂uf(u) = ∂uΦ(u) + o(1) when ρ < −1, in view of (11) in Proposition 2.
Remarking that 1 − g(u) = o(1 − u) and recalling from the proof of Lemma 10 that (1 −
u)∂uΦ(u) = O

(
1/(log(1− u))2

)
as u → 1 prove that ∂ufCTIF(u) → 0 as u → 1. Second,

taking account of g′(0) = 0 and h′(0) = 1 yields

∂uf
CTIF(u) = −g(u)∂uΦ(u)− Φ(u)∂ug(u) + o(1),

as u→ 0. Recall from the proof of Lemma 10 that Φ(u) = c3/(2u
2)(1 + o(1)) and ∂uΦ(u) =

−c3/u
3(1 + o(1)) as u→ 0. Since g(u) = o(u3) and ∂ug(u) = o(u2) as u→ 0, it follows that

∂uf
CTIF(u)→ 0 as u→ 0 and (14) is proved.

(iii) The first part of the proof is based on successive applications of Lemma 8. From (20)
and (28), one has, as u→ 1:

∂2
uu [log qY (u)]

1

log
(

1−u2
2

) =
γ

(1− u)2 log(1− u)
+

γ

2(1− u) (log(1− u))2

+
ε
(

1
(1−u)η

)
(1− u)2 log(1− u)

(1 + ρ+ o(1)) +O
(

1

(log(1− u))2

)
.

Similarly, from (21) and (26), as u→ 1,

∂u [log qY (u)] ∂u

 1

log
(

1−u2
2

)
 =

γ

(1− u)2 (log(1− u))2 −
γ

2(1− u) (log(1− u))2

+
γ

(1− u) (log(1− u))3 +
ε
(

1
(1−u)η

)
(1− u)2 (log(1− u))2

+O
(

1

(log(1− u))2

)
,

and, from (22) and (25),

log(qY (u))∂2
uu

 1

log
(

1−u2
2

)
 = − γ

(1− u)2 log(1− u)
− 2γ + β

(1− u)2 (log(1− u))2

− 2β

(1− u)2 (log(1− u))3 +
γ

(1− u) (log(1− u))2

− 3γ − β
(1− u) (log(1− u))3 −

3β

(1− u) (log(1− u))4
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+
ε
(

1
(1−u)η

)
(1 + o(1))

ρ(1− u)2( log(1− u))2 +
2ε
(

1
(1−u)η

)
(1 + o(1))

ρ(1− u)2( log(1− u))3

− γ

4 log(1− u)
+O

(
1

(log(1− u))2

)
.

Collecting the above three asymptotic expansions yields, as u→ 1,

∂2
uuf

TIF(u) =
β

(1− u)2 (log(1− u))2 +
2β

(1− u)2 (log(1− u))3 −
γ

2(1− u) (log(1− u))2

+
γ − β

(1− u) (log(1− u))3 +
3β

(1− u) (log(1− u))4 +
γ

4 log(1− u)

−
(1 + ρ)ε

(
1

(1−u)η

)
(1− u)2 log(1− u)

(1 + o(1)) +O
(

1

(log(1− u))2

)
. (39)

In addition, note that h′′(1) = 2 and ∂ufTIF(0) = (γ + ε(1/η))/ log(2) in view of Proposi-
tion 2, so that collecting (35) in Lemma 10 with (39) proves (15). The second part of the

proof consists in remarking that log qY (0) = 0 by construction and ∂u

[
1

log
(

1−u2
2

)
]

(0) = 0.

Therefore, taking account of (34), it follows:

∂2
uuf

TIF(0) =
∂2
uu [log (qY (u))] (0)

log(2)
=
γ + ε(1/η)

(
1 + ρ+ 1

η
∂`(1/η)
`(1/η)

)
log(2)

. (40)

Finally, note that h′′(0) = −4 and ∂ufTIF(0) = (γ+ε(1/η))/ log(2) in view of Proposition 2,
so that collecting (36) in Lemma 10 with (40) proves (16).
(iv) is a direct consequence of (iii).

Proof of Corollary 4. (i) When −2 < ρ ≤ −1, Proposition 3(iii) implies fCTIF ∈
C2([0, 1)) and ∣∣∂2

uuf
CTIF(u)

∣∣ ≤ C(1− u)α−1, ∀u ∈ (0, 1),

for any fixed α ∈ (0,−ρ − 1). Thus, applying Lemma 11 to ∂uf
CTIF yields fCTIF ∈

C1,α([0, 1]).
(ii) is a direct consequence of Proposition 3(iv).
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