An arbitrary order and pointwise divergence-free finite element scheme for the incompressible 3D Navier-Stokes equations - Archive ouverte HAL
Article Dans Une Revue (Article De Synthèse) SIAM Journal on Numerical Analysis Année : 2023

An arbitrary order and pointwise divergence-free finite element scheme for the incompressible 3D Navier-Stokes equations

Résumé

In this paper we discretize the incompressible Navier-Stokes equations in the framework of finite element exterior calculus. We make use of the Lamb identity to rewrite the equations into a vorticity-velocity-pressure form which fits into the de Rham complex of minimal regularity. We propose a discretization on a large class of finite elements, including arbitrary order polynomial spaces readily available in many libraries. The main advantage of this discretization is that the divergence of the fluid velocity is pointwise zero at the discrete level. This exactness ensures pressure robustness. We focus the analysis on a class of linearized equations for which we prove well-posedness and provide a priori error estimates. The results are validated with numerical simulations.
Fichier principal
Vignette du fichier
NS.pdf (3.15 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03250657 , version 1 (04-06-2021)
hal-03250657 , version 2 (25-08-2021)
hal-03250657 , version 3 (11-05-2022)

Identifiants

Citer

Marien-Lorenzo Hanot. An arbitrary order and pointwise divergence-free finite element scheme for the incompressible 3D Navier-Stokes equations. SIAM Journal on Numerical Analysis, 2023, 61 (2), pp.784-811. ⟨10.1137/21M1443686⟩. ⟨hal-03250657v3⟩
169 Consultations
185 Téléchargements

Altmetric

Partager

More