Low-Rank Projections of GCNs Laplacian - Archive ouverte HAL
Communication Dans Un Congrès Année : 2021

Low-Rank Projections of GCNs Laplacian

Nathan Grinsztajn
  • Fonction : Auteur
  • PersonId : 1083320
Philippe Preux
Edouard Oyallon

Résumé

In this work, we study the behavior of standard models for community detection under spectral manipulations. Through various ablation experiments, we evaluate the impact of bandpass filtering on the performance of a GCN: we empirically show that most of the necessary and used information for nodes classification is contained in the low-frequency domain, and thus contrary to images, high frequencies are less crucial to community detection. In particular, it is sometimes possible to obtain accuracies at a state-of-the-art level with simple classifiers that rely only on a few low frequencies.
Fichier principal
Vignette du fichier
main.pdf (534.12 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03248056 , version 1 (03-06-2021)

Identifiants

Citer

Nathan Grinsztajn, Philippe Preux, Edouard Oyallon. Low-Rank Projections of GCNs Laplacian. ICLR 2021 Workshop GTRL, May 2021, Online, France. ⟨hal-03248056⟩
91 Consultations
91 Téléchargements

Altmetric

Partager

More