Integration of Transparent Supercapacitors and Electrodes Using Nanostructured Metallic Glass Films for Wirelessly Rechargeable, Skin Heat Patches - Archive ouverte HAL Access content directly
Journal Articles Nano Letters Year : 2020

Integration of Transparent Supercapacitors and Electrodes Using Nanostructured Metallic Glass Films for Wirelessly Rechargeable, Skin Heat Patches

Abstract

Here we demonstrate an unconventional fabrication of highly transparent supercapacitors and electrodes using random networks of nanostructured metallic glass nanotroughs for their integrations as wirelessly rechargeable and invisible, skin heat patches. Transparent supercapacitors with fine conductive patterns were printed using an electrohydrodynamic jet-printing. Also, transparent and stretchable electrodes, for wireless antennas, heaters and interconnects, were formed using random network based on nanostructured CuZr nanotroughs and Ag nanowires with superb optoelectronic properties (sheet resistance of 3.0 Ω/sq at transmittance of 91.1%). Their full integrations, as an invisible heat patch on skin, enabled the wireless recharge of supercapacitors and the functions of heaters for thermal therapy of skin tissue. The demonstration of this transparent thermotherapy patch to control the blood perfusion level and hydration rate of skin suggests a promising strategy toward next-generation wearable electronics.
Fichier principal
Vignette du fichier
acs.nanolett.0c00869.pdf (1.17 Mo) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

hal-03247075 , version 1 (02-06-2021)

Identifiers

Cite

Sangil Lee, Sang-Woo Kim, Matteo Ghidelli, Hyeon Seok An, Jiuk Jang, et al.. Integration of Transparent Supercapacitors and Electrodes Using Nanostructured Metallic Glass Films for Wirelessly Rechargeable, Skin Heat Patches. Nano Letters, 2020, 20 (7), pp.4872-4881. ⟨10.1021/acs.nanolett.0c00869⟩. ⟨hal-03247075⟩
28 View
168 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More