Rigidity of minimal Lagrangian diffeomorphisms between spherical cone surfaces. - Archive ouverte HAL
Article Dans Une Revue Journal de l'École polytechnique — Mathématiques Année : 2022

Rigidity of minimal Lagrangian diffeomorphisms between spherical cone surfaces.

Résumé

We prove that any minimal Lagrangian diffeomorphism between two closed spherical surfaces with cone singularities is an isometry, without any assumption on the multiangles of the two surfaces. As an application, we show that every branched immersion of a closed surface of constant positive Gaussian curvature in Euclidean three-space is a branched covering onto a round sphere, thus generalizing the classical rigidity theorem of Liebmann to branched immersions.
Fichier principal
Vignette du fichier
Rigidity_JEP.pdf (368.43 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03246935 , version 1 (02-06-2021)
hal-03246935 , version 2 (25-03-2022)

Identifiants

Citer

Christian El Emam, Andrea Seppi. Rigidity of minimal Lagrangian diffeomorphisms between spherical cone surfaces.. Journal de l'École polytechnique — Mathématiques, 2022, ⟨10.5802/jep.190⟩. ⟨hal-03246935v2⟩
57 Consultations
68 Téléchargements

Altmetric

Partager

More