Rigidity of minimal Lagrangian diffeomorphisms between spherical cone surfaces - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2021

Rigidity of minimal Lagrangian diffeomorphisms between spherical cone surfaces

Résumé

We prove that any minimal Lagrangian diffeomorphism between two closed spherical surfaces with cone singularities is an isometry, without any assumption on the multiangles of the two surfaces. As an application, we show that every branched immersion of a closed surface of constant positive Gaussian curvature in Euclidean three-space is a branched covering onto a round sphere, thus generalizing the classical rigidity theorem of Liebmann to branched immersions.
Fichier principal
Vignette du fichier
Rigidity_final.pdf (362.82 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03246935 , version 1 (02-06-2021)
hal-03246935 , version 2 (25-03-2022)

Identifiants

  • HAL Id : hal-03246935 , version 1

Citer

Christian El Emam, Andrea Seppi. Rigidity of minimal Lagrangian diffeomorphisms between spherical cone surfaces. 2021. ⟨hal-03246935v1⟩
57 Consultations
68 Téléchargements

Partager

More