Noisesniffer: a Fully Automatic Image Forgery Detector Based on Noise Analysis - Archive ouverte HAL
Communication Dans Un Congrès Année : 2021

Noisesniffer: a Fully Automatic Image Forgery Detector Based on Noise Analysis

Résumé

Images undergo a complex processing chain from the moment light reaches the camera's sensor until the final digital image is delivered. Each of these operations leave traces on the noise model which enable forgery detection through noise analysis. In this article we define a background stochastic model which makes it possible to detect local noise anomalies characterized by their number of false alarms. The proposed method is both automatic and blind, allowing quantitative and subjectivity-free detections. Results show that the proposed method outperforms the state of the art.
Fichier principal
Vignette du fichier
IWBF_Paper.pdf (52.88 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03243928 , version 1 (31-05-2021)

Identifiants

Citer

Marina Gardella, Pablo Musé, Jean-Michel Morel, Miguel Colom. Noisesniffer: a Fully Automatic Image Forgery Detector Based on Noise Analysis. 2021 IEEE International Workshop on Biometrics and Forensics (IWBF), May 2021, Rome, Italy. pp.1-6, ⟨10.1109/IWBF50991.2021.9465095⟩. ⟨hal-03243928⟩
877 Consultations
122 Téléchargements

Altmetric

Partager

More