Observation estimate for the heat equations with Neumann boundary condition via logarithmic convexity - Archive ouverte HAL
Article Dans Une Revue Journal of Evolution Equations Année : 2022

Observation estimate for the heat equations with Neumann boundary condition via logarithmic convexity

Résumé

We prove an inequality of Hölder type traducing the unique continuation property at one time for the heat equation with a potential and Neumann boundary condition. The main feature of the proof is to overcome the propagation of smallness by a global approach using a refined parabolic frequency function method. It relies with a Carleman commutator estimate to obtain the logarithmic convexity property of the frequency function.
Fichier principal
Vignette du fichier
LogConvNeumann.pdf (309.4 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03238278 , version 1 (27-05-2021)

Identifiants

Citer

Rémi Buffe, Kim Dang Phung. Observation estimate for the heat equations with Neumann boundary condition via logarithmic convexity. Journal of Evolution Equations, 2022, ⟨10.1007/s00028-022-00842-2⟩. ⟨hal-03238278⟩
461 Consultations
153 Téléchargements

Altmetric

Partager

More