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Observation estimate for the heat equations
with Neumann boundary condition
via logarithmic convexity

Rémi Buffe*, Kim Dang Phung'

Abstract .- We prove an inequality of Hoélder type traducing the unique continuation property at
one time for the heat equation with a potential and Neumann boundary condition. The main feature
of the proof is to overcome the propagation of smallness by a global approach using a refined parabolic
frequency function method. It relies with a Carleman commutator estimate to obtain the logarithmic
convexity property of the frequency function.

Keywords .- heat equation with potential, logarithmic convexity, quantitative unique continuation.

1 Introduction and main result

In this paper, we establish the observation inequality at one time for the heat equation with a potential
and Neumann boundary condition. The analysis is based on the parabolic frequency function method
[K] adjusted for a global approach.

Let 2 C R"™ be a bounded connected open set with boundary 99 of class C*°. Consider in
{(z,t) € Q@ x (0,T)} the heat equation with a potential and Neumann boundary condition

ou —Au+au=0, in Qx(0,T) ,
Opu=0, on 002 x (0,7) ,
u(-,0) € L*(Q) .

Here, T > 0, a € L*> (Q x (0,T)) and n is the unit outward normal vector to 9f2.

We propose the following result.

Theorem 1 .- Let w be a non-empty open subset of . For any t € (0,T],
K (14 3+tlall oo g (0,0 HIal T2 (0 0,00 ) ’ 1-8
() 2y < (€7 VT ’ D )2y ) G0 z2gq) -

Here K > 0 and 8 € (0,1) only depend on (Q,w).

Such observation estimate traduces the unique continuation property at one point in time saying
that if u =0 in w x {t}, then w is identically null. Applications to bang-bang control and finite time
stabilization are described in [PWZ] and [BuP]. Our result is an interpolation estimate which is more
often used in a local way with a propagation of smallness procedure ([AEWZ], [FV]). Here the way
we choose to establish our main theorem is based on a global approach.
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Recall that Theorem 1 implies the observability estimate for the heat equations with a potential
and Neumann boundary condition [PW]. It is well-known that the observability estimate for the heat
equations can be obtained from Carleman inequalities. In the literature, at least two approaches allow
to derive Carleman inequalities for parabolic equations: A local one based on the Garding inequality
and interpolation estimates for the elliptic equations ([LR], [LRL], [BM]); A global one based on
Morse functions and integrations by parts over 2 x (0,T") ([FI], [FGGP]). Besides, unique continuation
results can be deduced either by Carleman techniques or by logarithmic convexity of a frequency
function [EFV]. Here we construct a new frequency function adapted to the global approach. Further,
we explicitly give the dependence of the constants with respect to ||a|, - as in [FGGP], [DZZ].

2 Preliminaries

In this section we derive three propositions on which our later results will be based.

Proposition 1 .- Let  C R™ be a bounded connected open set of class C*>, and let w be a non-empty

open subset of Q. Then there exist d € N*, (p1,p2, -, pa) € w? and (1,2, ,10q) € (C°° (ﬁ))d such
that for all i € {1,--,d}

(i) ¥; >0in Q, ¥; =0 on IQ ,

(it) the critical points of 1; are nondegenerate,
(iid) {x € % Vs ()] = 0} = {ps3j = 1, d},
(
(

) p; is the unique global mazimum of ; ,

v) for any j € {1, d}, maxi; = max; .
Q Q

Remark .- (7) implies that 9,1; < 0; (iii) says that the criticals points of v; are isolated and form
a discrete set; (4i7) implies that d = {z € Q; |V, (z)| = 0} and {z € Q; |V, (x)] = 0} C w.

Proof .- The existence of Morse functions (that is C*° functions whose critical points are nondegen-
erate) which are positive in © and null on the boundary 92 can be proved by virtue of the theorem on
the density of Morse functions ([FI, page 20], [C, page 80], [TW, Chapter 14], [WW, page 433]). Next,
by a small perturbation in a small neighborhood of each critical points, no two critical points share the
same function value [M, Theorem 2.34]. Denote by 1 such a smooth function and let aq, -+, a4 be its crit-
ical points such that {z € Q;|V¢ (z)| = 0} = {a;;j =1,-,d} C Q and ¢ (a1) > ¢ (az) > - > 1 (aa).
Now we will move the critical points following the procedure in [C, Lemma 2.68]. Introduce p1, -, pg
d points in w such that for each ¢ =1, -, d, there exists v; ; € C*°([0, 1]; ) be such that

e ~; ; is one to one for every j € {1,-,d},
® 7 ([0,1) N, ([0,1]) = 0,V (5,1) € {1, -, d} such that j # 1,
e v ;i (0)=ua;, Vje{l,-d},
e vi;(1)=7"1(p;), Vje {1, d}.
1

Here 7 is d-cycle, that is 7 (p;) = pj4+1 if j < d and 7 (pg) =p1, 70 =id, 7" =" Lo 1.

Introduce a vector field V; € C°(R™;R") such that {& € R%V;(z) # 0} C Q and Vi(v;;(¢)) =
vi;(t), Vi € {1,-,d}. Let A; denote the flow associated to V;, that is 9;A; (t,z) = V; (A; (t,r)) and
A; (0,2) = z. One has A; (0,a;) = aj, A; (t,a;) =, (t) and A; (1,a;) = 771 (p;). Further, for every
t € R, A; (t,-) is a diffeomorphism on Q and A; (t,-) [sg = Id. In particular, (A; (1,-))"" (77~ (p;)) =
Qj.




It remains to check that v¢; : © — R given by 1; (z) = ¢ ((Ai (1, (x)) satisfies all the re-
quired properties. Clearly, ¥; > 0 in £, ¥; = 0 on 09 and v; only have nondegenerate critical
points given by {x € Q;|Vy; ()| =0} = {p;;j7=1,-,d}. Finally, maxy; = maxy and ¢ (a1) =

Q Q

Y ((Az (1, Nn"" (ri-t (pl))) =7 ((Al (1, n"" (pl)) = 1; (p;) allow to conclude that p; is the unique
global maximum of %; and maxt; = maxt; Vi, j. This completes the proof.
Q Q

Our next result resume some identities linked to the Carleman commutator (see [P] and references
therein).

Proposition 2 .- Let

w

¢ (z)

D (z,t) = Tt)

,5>0,F(t):Tft+h,h>0and<p€C°°(ﬁ) .

Define for any f € H?(Q)
{ A f=-Vo-Vf— LAGS

—Af —nf where n = 30,® + ; |V<I>|2 ,

Sef
Spf =—0mf .

©

Then we have

[actr==5 [ oo

/QSwff:/QIVfF—/QnIfF—/manff

/Qs;ferz/stwaf :—2/QVfV2<I>Vf—/QVfAV<I>f

2 1 2 S 2 2
—= - Vo -Vo P
£ (e g 1wl fvoviove) i
+Boundary terms

where
Boundary terms = 2/ OnfV®-Vf— / 0 ® |V f|?
3, 0

+/n 8an<I>f+/ n0.® |f* .
o0 o0

Proof .- The proof of fQ A, f f and fQ S, f f is quite clear by integrations by parts. Now we compute
the bracket 2 (S, f, A, f): We have from the definition of S, f and A f,

1
25,0, Au8) =2 [ @7+ (Vo VF+ o)
and four integrations by parts give
2(S,f, A f) = —2/ VfV2OVf — / VfAVOf — / Vn Vo \f|2 + Boundary terms .
Q Q Q

Indeed,
/AfVcbe:/ 8an<I>~Vf—/VfV2<I>Vf—/VfV2fV<I>,
Q o0 Q Q



but
1 1
/VfVQfWI):—/ 8n<1>|Vf|2—f/A<I>\Vf\2 .
Q 2 o0 2 Q
Second,
/AfA(bf:/ 8an<1>f—/VfAV<I>f—/A<I>|Vf|2 .
Q o Q Q
Third,
2 [rve-vi= [ w00\~ [ Vi Vol - [ waelrf
Q (o9} Q Q

This concludes to the identity

2/QS¢fA,,f—/Qatn|f\2 :—2/QVfV2<I>Vf—/VfAV<I>f

+Boundary terms + [ (=8 — V- V®)|f]* .
Q

Finally, using 0;® = %@ and 02® = %@@, we obtain

—0m— V- VO =—L020 - V- VO,P — LVIVIVS
= -rh®—|Ve 2 - EVOVIV
= —2p— L|VOP - 2VEV2eV .
This completes the proof of (ii7).

Recall the following result which is a variant of [BP, Lemma 4.3].

Proposition 3 .- Let h > 0, T > 0 and Fy, F» > 0. Consider two positive functions y, N € C* ([0,T1])
such that

%y/ )+ N@)yt)| <Fy) .

2.1)
1+ Cy (
N ({#) < —N () + F
)< 7N (@) +F
where Cy > 0. Then for any 0 < t; <ty <t3 <T, one has
y ()™ <y (ta)y ()™ e
with .
8 1
/t (T —t+h)' T a
2
M= — .
[jp———
tn (T—t+h)""
and
D =2M (F2 (ts —t1)% + Fy (t3 — tl)) .
Proof .- Set I' (t) = T — ¢t + h. From the second inequality of (2.1), we have
T+ N)' < FpritCo (2.2)

Integrating (2.2) over (¢,t2) with ¢ € (¢1,t2) gives

14+Cp
(1;((1?))> N(t2) S N () + Fy (ta — 1) -

By the first inequality of (2.1),
y'(t) + 2N (t)y(t) < 2F1y(t)



and we derive that

I (t2)

1+Co
y/ + (2 <F(t)) N(tg) — 2F2 (tQ —tl) — 2F1> Yy S 0forte (tl,tz) .

Integrating over (t1,t2), we obtain

to T (t ) 14+Cp
2N (t3) — dt )
y(t2)e t F(t) < y(h) €2F2(t27t1) +2F; (ta—t1) ) (23)

On the other hand, integrating (2.2) over (to,t) with ¢ € (¢2,t3), one has

[ (t2)

14+Co
N () < (F(t)) (N (t2) + F2 (t3 — t2)) -

By the first inequality of (2.1),
—y'(t) = 2N ()y(t) < 2F1y(t)

and it follows that

14+Cy
2 (F(’f?)> ’ (N (t2) + Fy (t5 — t2)) + 2F)

0<y + T 1)

y for t € (ta,t3) .

Integrating over (tg,t3) yields

t3 F t 14+Cop
2(N(t2)+F2(t37t2))/ ((2)> dt

y(t2) <e to F(t) y(tg) €2F1(t3—t2) ] (24)
Combining (2.3) and (2.4), one has
ts F(tg) 1+Co
y(t1) o (ta—t1)2 2Fy (ta—t1) M 2F (t5—t2) 2FQ(t?’_tz)/ ( L (t) ) dt
y(t2) <yl(ts) 7@)@22 1) e2ta—h eHflts=t2)e t2
Y2

which gives

M
Y (t2) <y (ts) (y(t1)> 2P (ta—11)2 M [2F) (t2—11) M [2F) (t3—t3) 2 Fa (ts —t2) (t2—t1) M

y (t2)

which implies the desired estimate since M > 1.

3 Proof of Theorem 1

The plan of the proof of Theorem 1 is as follows. We divide it into seven steps. In Step 1, we derive
some estimates on the Morse functions given in Proposition 1. In Step 2, we introduce the weight
functions and establish the key properties linked to the Morse functions. In Step 3, we perform a
change of function and introduce the operators described in Proposition 2. In Step 4, we construct a
new frequency function adapted to our global approach. In Step 5, key estimates for the Carleman
operator is provided. In Step 6, we solve a system of ordinary differential inequalities thanks to
Proposition 3. In Step 7, we conclude the proof by making appear the control domain w x {T'}.



3.1 Step 1: The Morse functions

We have by Proposition 1, the existence of Morse functions ¢; associated to a critical point p; which
is its unique global maximum in 2. By Morse Lemma, there exists a neighborhood of p; and a
diffeomorphism U such that U (p;) = 0 and locally

Ui (U™ (@) = i (pi) — |2
which implies .
ZLhdrﬂ@gvm(vfwx»f:4m2:wﬂm)fwﬂU*%w»

and consequently, there are ¢, co > 0 such that for any i € {1,--,d}, in a neighborhood of p;
o1 [Vil* < (mgxwi - 1/%) < |Vl (3.1.1)
Let
B; be a neighborhood of {x € Q; |V, ()] =0 and mﬁaxwi — 1 (z) = O}
in which (3.1.1) holds ,
C; be a neighborhood of {x € Q; |V, ()] = 0 and mﬁaxzbi — 1 (z) > 0}

with B; NC; = 0 in which v; —¢); < 0 for some j # i. This is possible because ¥; (p;) < ¥; (p;) using

Proposition 1 (iv) and (v) with {p;;j =1,-,d} = {z € Q;|V¥; (x)| = 0} and C; = |J O, where O,
J#i

is a sufficiently small neighborhood of p;. And finally let

Proposition 4 .- There are ¢; > 0 and co > 0 such that for any i € {1,--,d}

(Z) In Di;

e |V < <m3X1/)i - 1/%') < oo |Vl
(i) In Bi,

a [Vii* < (mgxﬂ% - 1/%:) < e |V|* .
(iii) In C;,

cuvmfs(mmwwg.
Q

Proof .- The inequality (i7) holds by definition of B;. In C;, we use maxy; — ¢; > ¢ > 0 and
Q

max|Vy;|*
Q

IV |* < mﬁax|v¢i|2 < <H13X¢i - 1/%)- In Dy, [Vip;| > 0 and mﬁax%‘ —¢; > 0 imply the

desired estimates.



3.2 Step 2: The weight functions

Introduce for any i € {1, -, d}

Vi1 =P — mgm/)i ;

Pi2 = —1; — max; .

Q
Notice that
i1 = @i2 on 0Q and Opp; 1 + Oppi2 = 0 on 0L . (3.2.1)
Further, the link between ¢; 1 and 1); is described as follows: |¢; 1| = maxi; —1; and |V, 1 |2 = |V1pi|2.
Q

Now, we are able to state the properties of ¢; 1 and ¢; .

Proposition 5 .- There are c1,-,cg > 0 all positive constants such that for any i € {1,--,d}

(i) In D,
c1 |V<,0i,1|2 <l|gi1l < e |V<,0i,1\2 .
c1|[Vial* < lpial < e2|Veial”
(iii) In Ci,

1 |Veirl* < lpial -
(iv) There is j € {1,--,d} with j # i such that

wi1— i1 < —cz in C; .

2 < lpiz2] in Q and |p;2| <cs |Vgpi,2|2 in a neighborhood of 9 .

Cq |Vs01',2
(vi)

iz — i1 < —cg outside a neighborhood of 0% .

Proof .- By the properties of the Morse functions described in Proposition 4, we deduce (i) — (i)
and (i3¢). The inequality (iv) holds from the definition of C; and Proposition 1 (v). Next, we start to

prove (v) by seeing that |V o|* < ¢ < masg; |#i2]- Since [V, o] = [Viy;] > 0 in a neighborhood of
o

99, we have |@; 5| < ¢ < ¢5|Viso|>. This completes the proof of (v). Finally, since ¢; > 0 outside a
neighborhood of 9Q, we get 0 < ¢ < 1; and ¢; 2 — ;1 = —2¢; < —2¢c = —cg, that is (vi).

3.3 Step 3: Change of functions

Introduce for any (z,t) € Q x [0,7] and any i € {1,--,d}

S
(I)i at = 57 P, 9
(@.1) = i (o)
S
0] i ,t = —Y; .
d+ (l’ ) F(t)gp’Q(x)
with s € (0,1 and I'(¢) =T —t + h, h € (0,1].
Let f = (fi)1§i§2d where f; = ue®/2. We look for the equation solved by f; by computing

e®/2 (0, — A) (e~ ®/2f;). Introduce

Ag fi ==V®; - Vfi—1AD;f;
Spifi = —Afi — n;f; where n; = 29,®; + 1 V| .



Let Sf = (Sp. fi)1<icoar Af = (A fi)1<icogr a0d F = (—afi);<;<oq- We find that

Wf+Sf=Af+1, (3.3.1)
8an — %an(blfl =0 on 0N x (O,T) . o

Let (-,-) denote the usual scalar product in (L? (Q))2d and let ||-|| be its corresponding norm. Now,
we claim that
(Af.f) =0,
Sty = 3 VAP [ wl
i=1,..,2d "¢ Q (3.3.2)

&spp = - T | oAl + 25,00 = (S 1.0 +2(5.08)
d

Indeed, applying Proposition 2 (i) — (i) and using the Robin boundary condition for f;, all the boundary
terms appearing in the integrations by parts can be dropped since for any i € {1,--,d}

P, = (I)dJri and 871@1 + 8n(bd+i =0 on 00 x (0, T) s (333)

by (3.2.1). To establish the last identity in (3.3.2), we compute 4 (Sf, f) as follows:

%<vaf> :% (z Z /|Vfi|2_/77i|fi|2)
2(SF,0.) / omlffe2 / Oufidf:

by an integration by parts. But, by using the Robin boundary condition for f; = ue®/? in (3.3.1), we

have : 1
Z / anfzatfz = Z / 7871.(1)1' (u@tu + |U|2 8t(pz) €q>i = O
i=1,.,247 9% T pal00 2 2

since for any 7 € {1,--,d}, ®41; = ; and 9, P; + 3, P4y; = 0 on 9N x (0,7).

3.4 Step 4: Energy estimates

By a standard energy method, we have
S IFIPHSE R = ()

and by introducing the frequency function

(Sf. 1)

N () =
O=

it holds , ,

N @) [IfFI7 < (S'f, £) +2(Sf, Af) +|IF ]
Indeed, for the energy identity we use the first equality of (3.3.1) and (Af, f) = 0. For the inequality
of the derivative of the frequency function, we use % (SE, )={(S"f, Y+2(Sf,0:f) (see (3.3.2)) and
replace 0 f by Af —Sf + F in order to get

NWOIFIY = (S'FF)+2(SE0) I = (SF. ) (~2(SF, ) +2(F. F))
= (S'F. 1)+ 2(SF AP IS = 2SFI7IFI7 + 2485, 0) 11
+2(SF,.f)° = 2(Sf. £) (. f)
= ((8'F. ) +2(SF AN IFII? *2||Sf IPUA + S0 1P 0
+2(SF =40 8) =587

oo



By Cauchy-Schwarz, we obtain the desired estimate for N’ (¢).

Since

1% < flall2 15117

where ||al[o, = [|a]l o @x (0,7)): We obtain the following system of ordinary differential inequalities

LY PIRESNYT )IfIIQ‘ < llallo I1£17
[Eils ~

2 dt
N’ (t) <

(3.4.1)

3.5 Step 5: Carleman commutator estimates

We claim that for some s € (0, 1] sufficiently small, n; <0 and (Sf, f) > 0 and

1+Co

(Sf.f)+2(8f,Af) < (Sf, f>+ 5 17117

where Cj € (0,1) and C > 0 do not depend on h € (0, 1].
Indeed, observe that

~2lpial +5Veial?)  ifi€{ld}

ar?
2\ ... <0
1z (—2|wi—az| +5|Vpi_as] ) ifie{d+1,-,2d}

1 1 )

20,0, + - |V =

ROt ®it g [V
for s € (0, 1] sufficiently small since \V(pi,j|2 < clg; ;| foranyi € {1,--,d}, any j € {1, 2} by Proposition
5 (i) — (4i7) and (v). This concludes the proof that (Sf, f) > 0 for s small.

By Proposition 2 (iii),

STASLAD =2 3 / VIV VL- Y [ viaves,
2d

=1,..,2 i=1,..,
3.5.1
—f > /Q (m t3 Vei|* + 4V¢iv2<ﬁiv‘bi) |£il? (3:5.1)
i=1,..,2d

+Boundary terms

where ¢; = ;1 for i € {1,--,d}, p; = pi_qpo for i € {d+1,--,2d}, and

Boundary terms =2 Z / On[iV®; -V f; — Z / 8n<1>i|Vfi|2
; 47 o% i=1,..,24 7 99

(3.5.2)
+ > Onfid®ifi+ Y / Ni0n®; |fi|?
i=1,..,2d 7 9% i=1,..,2d 7 9%
First we estimate the contribution of the gradient terms:
9 cs cs 9
>, (2 VAVIeNfi— | ViAVeSi) <3 > | VAP 4 IF]
i=1,..,2d Q Q i=1,..,2d (3.5.3)
cs e
<X [1vAPE LI
i=1,..,2d
for s € (0, 1], using Cauchy-Schwarz, |2V2<I>Zv’ < F, and [AVE;| < F < %



Next we check the contribution of the boundary terms. We claim that
2
> / 0:0n®; [ fi|” =0
i=1,..,2d 7 9%
Indeed, n; = 18,®; + 1 |V®,|* implies
Z / 00D | fi[2 Z / ( 0,®; + + |vq>|>anq>i|u|264>
=+ Z / ( 8t<I> + - |V<I> | )anq)dJri "LL|2 6(1)

where we used ®4y; = ¢, on 9N x (0,T) and |VP4y;| = |VP;| on 902 x (0,T). Since 0,P; + 9, Pytri =0
on 99 x (0,T), this completes the claim. We also have

2 Z/OJW‘I) Vfi— Z/a@wﬂ _

i=1,..,2d

Indeed, since V®; = 9,,®; 7 on 9§ x (0,7) and 0, f; = %&ﬁbifi,

2 OnfiV®;-Vfi =2 / 0
i:1z,..:,2d o9 i:lz,..:,Qd o0

=2 Z / (anq)i + anq)d-i-i)
o0

i=1,...d

=0

1 2

2

1
7an¢)i i
5 f

where we used (3.3.3). For the second contribution, it holds

2

e®i =

1
IVfil* = ‘Vu + u§V¢’i

1
= 8711/ 2 + 7“/671(1)7,
2

2
€<I>

on 90 x (0,T). We then conclude that — Z / 9, ®; |V fi|> = 0 using (3.3.3). The last boundary
19)

term is treated as follows. Using 0, f; = %an@ifi, |Ad;| < ¢ and (3.3.3), we have

> [ agavs = ¥ [ Sosawnf
i=1,..,24 7 9%

i=1,..,2d

CS 767 _ ) ,2
r [ mellal =T d/ﬁﬂ( 0.:) |1

=1,..,

| /\

since 0,1; < 0 and, by an integration by parts

| comin? =2 [ Vv, - /A¢|f1

i ;7 /i - 2
_/QIVfI + [ VLR + 1

using Cauchy-Schwarz and [A®;| < ¥ < §*, which implies that

8nzA z_* i e )
zzd/a fib®ifi < Z/IWI+ LI+ 5 Z/mw

One can conclude for the contribution of the boundary terms that for any s € (0, 1]

Boundary terms<— Z /\sz| + = ||fH + Z /|V<I>\ i (3.5.4)

'Ll,, zl,,

10



Consequently, from (3.5.1)-(3.5.2)-(3.5.3)-(3.5.4), we obtain that for any h € (0,1] and any s € (0, 1]

(S'F.5)+2(5F,Af) <% Z /IszlJr 112

i=1,..,2d

2, S 2
i=1,..,2d
Cs 2 2
= ;|7 | fi
w5 X [ verisl
i=1,..,d
which gives that for any s € (0, 1] sufficiently small,

Stp+2stAn <F X [IVAP eI
1

(3.5.5)

2 1 2 2
T > . (771'+8|V‘I)i| ) |fil
i=1,..,2d
Indeed, —$V®, V20, VO, < & | V2| |VE;|* < cs5|VP;|°.
It remains to prove that
2 1 2 2 2 2*5/6 / 2
—= i+ = |V, e —n:) 1fil” - 3.5.6
P X [ (neger) st <o 7 S [ (356

By Proposition 5 (i) and (i), |¢i,1] < £ |[Veia|* in B; UD;. This implies that for any i € {1, -, d}

2 2
2 s 2 2s 4s 4s
Ve = —5 Vil < -5 leual = = (—55 il ) < =i

Therefore, we get that for any i € {1, -, d}

1 s
N
4 B;UD; c B;UD;
which yields

—% 3 /BD (m+;|vq>ﬂ> P <2 S/C Z —ni) £l

i=1,..,d B;UD;

By Proposition 5 (iv), there is ¢z > 0 such that ¢; 1 — ;1 < —c3 in C; for some j # i. Therefore,
+3 |v<1>i|2\ < & and [f;|* = e*(eer=2a) T | £, it holds

2 | -
[ (ergiver)ar s gest | S [ | <cnr
i=1,..,d”Ci
J#Z

By Proposition 5 (v), |@;2] < cs |V<pi72|2 in a neighborhood ¥ of 02 and similarly one can deduce that,
2 2 _2-—s/c
- Z /(n w)ml < Z / —mi) | fil?
i=d+1,. i=d+1,.

By Proposition 5 (vi), there is ¢g > 0 such that ¢; o — ;1 < —cg outside the neighborhood ¥ of 9
which implies

2 e
r Z.,Qd/ﬂ\ﬂ (771+8|V<I>z|>|f1| < Z / |fl <, ||f||

i=d+1,
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This completes the proof of (3.5.6).

Consequently, by (3.5.5) and (3.5.6) one can conclude that for any h € (0,1] and any s € (0,1]
sufficiently small,

C's /C 2
(S'f, f)+2(Sf, Af) < — IV fil? + =il L (=) | fil
F Z / ;Qd/ﬂ

which implies
1+ Co

(Sf.f)+2(8f,Af) < (Sf, f>+ 5 1711

with Cy € (0,1) and C > 0. Finally, the system (3.4.1 ) of ordinary dlﬁerentlal inequalities becomes

||f|| +N @) [ £IP] < llallo 1 £1
1+ Cy
T

th

N’ (t) < N (t) + llal%, +

ﬁ .

3.6 Step 6: Solve ODE

Let h € (0,1] and £ > 1 such that ¢h <min(1/2,7/4). Applying Proposition 3 with t3 = T, to = T —/h,
and t; = T — 2¢h, we obtain that

y (T — th)" ™ <y (T) y (T — 20n)M* P

where Dy = 2M, <F2 (20h)? + Fy (%h)), M, = 1<Qg>ff);}0 < 1<f+(?)‘2’0 if Cy > 0.
2041 3

From now, y (t) = ||f (,t)||*, N is the frequency function N, Fy = llal| , and Fy = ||aH + h2 We
have by the above Proposition 3 and Step 5,

9 1+ M, 9 9 M,
(I T =ml?) " <1 G (IF (T - 2m))7) K (3:6.1)

where K; = eP¢ with Dy = 2M, ((Ha”ic n ,g) (20h)? + |lall (2£h)). Notice that when [|a||/* h < 1,
then the following upper bound for K, holds

K, < eCe(1tlalZ?) (3.6.2)
Indeed, Dy < 2M, (1 402 +2 % (2%)2) and 72 al|, = flal*/® (||a||§x{3 ) < |la))??.
3.7 Step 7: Make appear w
It is well-known that for any 0 <t <t <T,
||u('7t2)HL2(Q) < eltemtliel Hu('7t1)||L2(Q) (3.7.1)

where |lal|o, = [|all Lo @ (0,7))-
Observe that , , ,
||f1HL2(Q) < Hf” <2 Z ||fi||L2(Q)

i=1,..,d

12



since ¢; 2 < ;.1 on Q. Therefore, (3.6.1) becomes

1+M,
(1 T =m)Zae) <2 32 A D)

i=1,..,d

My (3.7.2)
12 3 i GT=20)7e0) | Ki
i=1,...d
First, notice that from (3.7.1), using ®; <0,
1£i (T = 26h) |72y < €Tl /Q u (- 0) . (3.7.3)

Second, we make appear w; , = {z;|x — p;| < r} Cw from || f; (~,T)H%2(Q) as follows:

2 2 5. 2 s,
T =/ fu (-, T)| ew1+/ﬂ\ fu (-, T) 2 s
/ (TR + e Tl / (-, 0) 2

Q

(3.7.4)

because on Q\w;,, @;1 < —p for some g > 0 and we used (3.7.1). Third, from (3.7.1) with
¢h <min(1/2,T/4) and —¢1,1 < c¢ it holds

/"LL(-,T)|2 ée%h”aﬂw/ |u(.’T_gh)|2€ﬁs&1,1efmip1,1
Q

A (3.7.5)
. e 2
< eTllalls ¢ 1R 1fi (T — Eh)”m(n)

Combining the above four facts (3.7.2), (3.7.3), (3.7.4) and (3.7.5), we can deduce that

(o)™

sc(14+My) M

<6W€T\|a|| (14+My) (||f1 (.,T—éh)HQLz(Q)) é
M,

se(i4My) 2

< e @R eTlalloe (1+Me) | 9 Z 1fi ('aT_%h)HB(Q) Ke
i=1,..,d
2
x |2 Z I1fi ()220
i=1,..,d

< T (Tllall (12 (2d62T|a| /Iu ) Ke

x2d (/ lu (-, T)) +e = e2Tlele /|u > )

We will choose £ > 1 large enough in order that S(J((Zil)v}[f) — 2R < —SE that is C((lefi/l)” < &. This is
< (“i) =r with Cy € (0,1). Therefore, combining with the upper bound for K,

(see (3.6.2)), there are M > 0 and ¢ > 0, such that for any h > 0 satisfying ¢h <min(1/2,7/4) and

Hoz||ié3 h <1, we have

( o |u(.7T)|2>1+M < ¢e(LTlall o +lal22?) (/| 2)M

(62h/|u \+e2h/|u )

13
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On the other hand, using (3.7.1), for any h >min(1/(2¢),T/ (4¢)),

/|u(7 <62T||a|| /‘u ﬁ (224—4/) 7
Q

and for any h such that 1 < Ha||2/3

,4 sp 2/3
/|u(_, 2 < (2T llall /|u S L fal2®
Q

Consequently, one can conclude that for any h > 0, it holds

(/Q |u(.,T)|2)1+M < (1 F+Tlall o +lall2?) (/ 00 M

x( /| +eh/u,0)|2>.
Now, choose h > 0 such that

1+M 1 1+M
o+ eI+ 34T llall o +llallZ?) <62T|alm/ u(.’0)|2> == (/ |u(-,T)|2) ’
Q 2 \Ja

we obtain the desired estimate for some M; > 1 and ¢; > 0

(/Q |u(.7T)|2>1+1\/11 < eer(1+F TNl +lal2) /w (-, T)|? (/Q |u(.’0)|2) M

This completes the proof.
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