Generative model for fBm with deep ReLU neural networks - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2021

Generative model for fBm with deep ReLU neural networks

Résumé

We provide a large probability bound on the uniform approximation of fractional Brownian motion $(B^H(t) : t ∈ [0,1])$ with Hurst parameter $H$, by a deep-feedforward ReLU neural network fed with a $N$-dimensional Gaussian vector, with bounds on the network construction (number of hidden layers and total number of neurons). Essentially, up to log terms, achieving an uniform error of $\mathcal{O}(N^{-H})$ is possible with log$(N)$ hidden layers and $\mathcal{O} (N )$ parameters. Our analysis relies, in the standard Brownian motion case $(H = 1/2)$, on the Levy construction of $B^H$ and in the general fractional Brownian motion case $(H \ne 1/2)$, on the Lemarié-Meyer wavelet representation of $B^H$. This work gives theoretical support on new generative models based on neural networks for simulating continuous-time processes.
Fichier principal
Vignette du fichier
preprint-HAL.pdf (615.02 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03237854 , version 1 (26-05-2021)
hal-03237854 , version 2 (16-06-2021)
hal-03237854 , version 3 (26-01-2022)
hal-03237854 , version 4 (25-04-2022)

Identifiants

  • HAL Id : hal-03237854 , version 1

Citer

Michaël Allouche, Stéphane Girard, Emmanuel Gobet. Generative model for fBm with deep ReLU neural networks. 2021. ⟨hal-03237854v1⟩
688 Consultations
449 Téléchargements

Partager

More