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Abstract

We provide a large probability bound on the uniform approximation of fractional
Brownian motion (BH(t) : t ∈ [0, 1]) with Hurst parameter H, by a deep-feedforward
ReLU neural network fed with a N -dimensional Gaussian vector, with bounds on the
network construction (number of hidden layers and total number of neurons). Essentially,
up to log terms, achieving an uniform error of O

(
N−H

)
is possible with log(N) hidden

layers and O (N) parameters. Our analysis relies, in the standard Brownian motion case
(H = 1/2), on the Levy construction of BH and in the general fractional Brownian motion
case (H 6= 1/2), on the Lemarié-Meyer wavelet representation of BH . This work gives
theoretical support on new generative models based on neural networks for simulating
continuous-time processes.

Keywords: fractional Brownian motion, Gaussian process, neural networks, generative models
MSC: 62M45, 60G15, 60G22

1 Introduction

Over last few years a new paradigm of generative model has emerged in the machine learning com-
munity with the goal of sampling high-dimensional complex objects (such as images, videos or natural
language) from a data set of these objects. If X denotes the random variable taking values in a general
metric space (X , dX ) from which we have observations (X1, . . . , Xn, . . . ), the problem of generative
model amounts to finding a function Gθ : RN 7→ X and a latent probability distribution µ on RN such
that

X
d
= Gθ(Z) and Z ∼ µ. (1)
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Usually, the choice of the dimension N (the so-called latent dimension) is part of the problem. The
function Gθ belongs to a parametric family of functions G = {Gθ}θ∈Θ, and it is common to take neural
networks: in this work, we follow this approach. Essentially, two main questions have to be addressed
to obtain a generative model: a) how to choose G to have a chance to get the equality in distribution
(1), or at least a good approximation of it for some Gθ ∈ G? b) how to learn the parameter θ from
the data set? The second question b) has been tackled by [18] in their seminal work of Generative
Adversarial Network (GAN). We will not focus on that problematic in this work, there is a tremendous
number of works (about 30,000 citations of [18] on Google Scholar at the date of writing this article).
Instead, we are to focus on a), i.e. quantifying how to choose G and the latent space (N,µ) when X
is the space of continuous functions indexed by time, equipped with the sup norm dX , and when the
distribution of X is that of a stochastic process (infinite dimensional object), possibly non-Markovian.

Among the huge and expanding literature on GANs, lot of works studied the ability to generate
time-series (in a discrete time), either in finance [37], in medicine [12] or in meteorology [20], for citing
only some of them. However, to the best of our knowledge, none of them is dealing with continuous-
time processes. Moreover, designing the architecture of a neural network Gθ with respect to its depth
(number of hidden layers), size (number of neurons), type (feed-forward, recurrent, convolutional,
etc.) and activation functions (sigmoid, ReLU, etc.), is a very difficult question and therefore often
left to empirical grid search. In this work, we aim at tackling these aspects and providing precise
quantitative guidelines on G in the case where X is a fractional Brownian motion (fBm) with Hurst
parameter H ∈ (0, 1) including standard Brownian motion (H = 1/2) as a particular case.

A fBm is a centered Gaussian process with a specific covariance process [29], detailed definition and
properties are given in Section 2. The motivation in choosing such a model for our study is threefold.
First, its stochastic simulation is known to be quite delicate (at least for H 6= 1/2), especially when the
number of time points gets larger and larger – see [10,21] for a review and [4,23] for recent contributions
– hence having at hand a generative model for the full path is really appealing for practical use. Second,
it is widely used in various real-life modelings: uni and bipedal postural standing in biomechanics [3];
volatility of financial assets [6, 15]; vortex filament structures observed in 3D fluids [14]; prices of
electricity in a liberated market [2]; solar cycle [34]; for other fractional-based modeling, see [5]. Third,
understanding the right design of G for generating the fBm distribution may well open the way to
handle more complicated stochastic models written as a Stochastic Differential Equation (SDE) driven
by fBm for instance: indeed, as we will see, the design of the current G inherits much from the
time-regularity of X 1 and this property is lifted to SDE driven by X. This part is left to further
investigation.

In this work we study the required depth and complexity (size and number of computations) of a
deep-feedforward neural network (NN) for G, with a Rectified Linear Unit (ReLU) for the activation
function [17, Chapter 6]: it is referred to as ReLU NN in the sequel. For the latent distribution µ, we
consider N independent components and without loss of generality for the simulation purpose, each
of them is taken as a standard Gaussian random variable. Essentially, our results state (Theorems 2
and 3) that for a given latent dimension N , there is a Gθ ∈ G such that the equality (1) holds with an
error N−H (1 + log(N))

1/2 in sup norm with probability 1 − p: focusing on the rates with respect to
N → +∞, the depth of Gθ is at most

O (logN)

and its global complexity is
O
(
N1+ζ logN

)
,

where ζ is a positive parameter that can be taken as small as desired, and where the O (.) depend
on p, ζ and H. In particular for the Brownian motion (H = 1

2 ) we can take ζ = 0. A more detailed
dependence on p, ζ and H is given latter.

1remind that the parameter H mostly coincides with the Hölder exponent of the paths.

2



These results are original to the best of our knowledge, and should play a key role in tuning
GAN-based methods in the choice of the parametric family of NN for generating fractional stochastic
processes in continuous time. These results make a clear connection between the time-regularity of the
path (that could be measured on the real observed data) and the architecture of the parameterization
to set up.

This work is organized as follows. In Section 2, we recall few properties of fBm. Our approxima-
tions are based on wavelet decompositions and we will recall appropriate materials. Then we state our
main quantitative results about depth and complexity of deep ReLU neural networks for generating
fBm. Section 3 is devoted to the proofs. For pedagogical and technical reasons, we start with the case
H = 1/2 (standard Brownian motion) in Sub-section 3.1; then we handle the general case of fBm in
Sub-section 3.2.

Notations: The set of naturals without zero N0 := {1, 2, . . . , n, . . . } and N := N0 ∪ {0}; the set
M :=

{
2n+1, n ∈ N

}
; the vector of N standard Gaussian random variables G1, . . . , GN is denoted by

G1:N ; the imaginary number i2 = −1. We write x = Oc (y) if |x| ≤ c |y| for some positive constant c
which, in the context where it is used, does not depend on the latent dimension N nor the accuracy
ε; usually y will be a not-small quantity (y ≥ 1) as a polynomial or logarithmic function of N or/and
ε−1 according to the context.

2 Preliminaries and main results

2.1 About Fractional Brownian motion

Fractional Brownian motion (fBm)
{
BH(t)

}
t∈R with a Hurst parameter H ∈ (0, 1) is a Gaussian

process, centered (E
[
BH(t)

]
= 0), with covariance function

Cov
(
BH(t), BH(s)

)
=

1

2

(
|t|2H + |s|2H − |t− s|2H

)
, for any s, t ≥ 0.

When H = 1/2, we will simply write B instead of B1/2. Our aim is to approximate the distribution
of BH on a finite interval: owing to the self-similarity property of fBm [32, Proposition 2.1], we can
consider, without loss of generality, the interval [0, 1], which is our setting from now on.

As BH is a centered Gaussian process in a Banach space (C0([0, 1],R), ‖.‖∞) (see [25, Proposition
3.6]), BH admits almost sure (a.s.) series representation of the form

BH(t) =

∞∑
k=0

uk(t)Gk, ∀t ∈ [0, 1], (2)

where {uk}k∈N is a sequence of continuous non-random functions, and {Gk}k∈N is a sequence of
independent standard Gaussian variables N (0, 1). The equality (2) holds in the sense that the series
converges a.s. uniformly. Such representations for fBm are studied in [31] using wavelets.

We write aN � bN if there exists a constant c ≥ 1 such that ∀N ∈ N0, c−1 ≤ aN/bN ≤ c. Let
H ∈ (0, 1); [24] showed that there exists a sequence {uk}k such that the L2-truncation error isE

 sup
t∈[0,1]

∣∣∣∣∣
∞∑
k=N

uk(t)Gk

∣∣∣∣∣
2
1/2

� N−H(1 + log(N))1/2; (3)

in addition, the above convergence rate is optimal among all sequences {uk}k for which (2) converges
a.s. in sup-norm.

In [31] the authors focused on the a.s. uniform convergence on [0, 1] for different wavelet repre-
sentations series (2) using a specific mother wavelet function ψ, and the authors of [1, Theorem 5]
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showed their optimality in the sense of (3). Not only ψ has to generate an orthonormal basis{
ψj,k(t) = 2j/2ψ

(
2jt− k

)}
(j,k)∈Z2 of L2(R,dx) =

{
f :
∫∞
−∞ |f(x)|2 dx <∞

}
[30, Theorem 1], but also

it must respect some other regularity properties discussed hereafter.
In the following, our convention is to write the Fourier transform and its inverse as

f̂(ξ) :=

∫ ∞
−∞

f(t)e−itξ dt, f(t) :=
1

2π

∫ ∞
−∞

f̂(ξ)eitξ dξ.

2.2 Brownian motion: wavelet representation and main result for NN gen-
erative model

A first well known series (2) is the so-called Lévy construction of the Brownian motion with the basis
function

ψFS
j,k(t) = 2j/2ψFS

(
2jt− k

)
, j ∈ N, k = 0, . . . , 2j − 1, (4)

where ψFS(x) = 2
(
x10≤x<1/2 + (1− x)11/2≤x≤1

)
is twice the antiderivative of the Haar mother

wavelet [19]. The set {ψFS
j,k}j∈N,k=0,...,2j−1 defines the Faber-Schauder (F-S) system [13,35] and forms

an orthogonal basis of L2(R,dx). Thus, given {G1, Gj,k}j≥0, 0≤k<2j a sequence of independent stan-
dard Gaussian random variables N (0, 1), the Lévy construction of the Brownian motion states that
a.s. the truncated series

B(n)(t) := G1t+

n∑
j=0

2j−1∑
k=0

2−(j+1)ψFS
j,k(t)Gj,k (5)

converges uniformly on [0, 1] to a Brownian motion B as n → ∞ (see [36, Section 3.4]). We write
BN := B(n) with N = 2n+1, to emphasize that (5) contains N scalar Gaussian random variables, which
is consistent with the latent dimension discussed above. The next result quantifies the a.s. convergence
rate of BN to B, the proof is postponed to Section A.1.

Lemma 1. Let N ∈M. Then, there exists a finite random variable C(6) ≥ 0 such that almost surely

sup
t∈[0,1]

|B(t)−BN (t)| ≤ C(6)N
−1/2

(
1 + log(N)

)1/2
. (6)

The above result is somehow well-known and shows that it is enough to approximate with a high
probability the function t 7→ BN (t) by a ReLU NN with suitable architecture, which is the purpose of
the following statement.

Theorem 2. Let N ≥ 2 and
(
ΩN ,FN ,PN

)
be a probability space supporting N i.i.d. standard

Gaussian random variables G1:N . Therefore, there exists an extension (Ω,F ,P) supporting a Brownian
motion B such that ∀p ∈ (0, 1], there exist a ReLU neural network B̃N,p : RN+1 → R and a finite
random variable C ≥ 0 (independent from N and p) such that

P

(
sup
t∈[0,1]

∣∣∣B(t)− B̃N,p(t, G1:N )
∣∣∣ ≤ CN−1/2 (1 + log(N))

1/2

)
≥ 1− p. (7)

Additionally, B̃N,p is composed at most by

1. Oc
(

log
(

NρN
(1+log(N))1/2

))
hidden layers,

2. Oc
(
N log

(
NρN

(1+log(N))1/2

))
neurons and parameters,

with ρN = −Φ−1( p
2N ) and Φ−1 the quantile function of the normal distribution.
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The proof is postponed to Section 3.1.

Remark. It is known that Φ−1(u) ∼ −
√
−2 log(u) as u→ 0+ [11]. Therefore we shall get equivalents

of the architecture size, either as p→ 0 or as N →∞ (which results in ρN →∞ anyhow):

1. For a fixed p and as N → ∞, ρN/(1 + logN)1/2 tends to a constant so the depth and the
complexity are respectively of order Oc (log(N)) and Oc (N log(N));

2. For a fixed N and as p → 0, the bound (7) holds while very slowly increasing the network size
since the impact of p is just in log(log(·)).

As a complement to the previous marginal asymptotics, the estimates of Theorem 2 allow to have p de-
pendent on N : for instance, building a ReLU NN with an error tolerance of order N−1/2 (1 + log(N))

1/2

with probability 1−N−k (for any given k > 0) can be achieved using a depth Oc (log(N)) and a com-
plexity Oc (N log(N)).

2.3 Fractional Brownian motion: wavelet representation and main result
for NN generative model

Among the wavelet fBm series representations proposed in [31], we will focus on the following one

BH(t) =

∞∑
j=−∞

∞∑
k=−∞

2−jH
(
ΨH
(
2jt− k

)
− ΨH(−k)

)
Gj,k, (8)

with

Ψ̂H(ξ) :=
ψ̂(ξ)

(iξ)H+1/2
. (9)

One choice for the wavelet ψ is the Lemarié-Meyer wavelet [26] (see [28, Equations (7.52)-(7.53)-(7.85)
and Example 7.10] for more details on its construction) defined by its Fourier transform

ψ̂M(ξ) := e−i
ξ
2


sin

(
π

2
ν

(
3 |ξ|
2π
− 1

))
,

2

3
π ≤ |ξ| ≤ 4

3
π,

cos

(
π

2
ν

(
3 |ξ|
4π
− 1

))
,

4

3
π ≤ |ξ| ≤ 8

3
π,

0, else,

(10)

where ν : R→ [0, 1] is a smooth function satisfying

ν(x) =

{
0, if x ≤ 0,

1, if x ≥ 1,
and ν(x) + ν(1− x) = 1. (11)

Such properties allow to satisfy the quadrature conditions of the conjugate mirror filter [28, Subsection
7.1.3 p 270] which specifies the scaling function in the construction of wavelet bases (see [28, Chapter 7]
for a complete overview of wavelet bases analysis). Considering the truncated series of (8) over a specific
set IN containing at most N indices (j, k), the authors of [1, Section 5 p.469] have showed that there
exists a finite r.v. C(12) ≥ 0 such that

sup
t∈[0,1]

∣∣BH(t)−BHN (t)
∣∣ ≤ C(12)N

−H (1 + log(N))
1/2

. (12)

In other words, if ΨH is well chosen such that ψ satisfies conditions (A1), (A2), (A3) listed in [1, p. 456],
then the wavelet decomposition (8) is optimal [1, Theorem 5] in the sense of (3).
Back to the construction of (10), a classical example of ν due to Daubechies [8, p. 119] is

ν(x) = x4
(
35− 84x+ 70x2 − 20x3

)
,
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which entails ψ̂M having 3 vanishing derivatives at |ξ| = 2π/3, 4π/3,8π/3. Below, we will propose
another example of ν with higher order vanishing derivatives at the boundaries in order to get (see the
proof) a fast decay rate of all the derivatives (ψM)(k) at infinity, which results in reducing the com-
plexity cost of the ReLU NN architecture that we will build in Theorem 3. Note that the construction
below might not be numerically optimal among the large literature on wavelets and applications in
signal processing, however it is a concrete example on which we can base our theoretical result.

BConstruction of ψM: Let qst be the quantile function of a Student distribution with β degrees of
freedom. Thus, considering the function

ν(u) :=
1

1 + exp(−qst(u))
, u ∈ [0, 1] (13)

the conditions (11) are easily satisfied. We now briefly verify (A1), (A2), (A3) from [1, p. 456] to
validate the use of such ν. Condition (A1) is obvious since the wavelets

{
ψM
j,k

}
(j,k)∈Z2

generate an

orthonormal bases in L2(R,dx). The condition (A3) is also clear because ψ̂M vanishes around 0.
Last, consider (A2): the decay of ψ̂M and its derivatives at infinity is straightforward since it has
compact support. What really needs to be checked is the smoothness property of ψ̂M: let us justify
that it is C∞. Observe that this follows from the tentative property ν(q)(0+) = ν(q)(1−) = 0 for all
q ∈ N0. To see this, remind that the Student distribution belongs to the Fréchet maximum domain of
attraction [9, Theorem. 1.2.1(1.)], therefore the tails of qst explode as a power function with a exponent
γ = 1/β > 0 called the tail index. Second, for all q ∈ N, q(q)

st (u) explode at most as a power function
around 0 and 1, see [16, Lemma 15]. Moreover, the sigmoid function ∆(x) := (1 + exp(−x))−1 clearly
satisfies ∆(q)(x) = Oc (exp(− |x|)) for q ≥ 1. Hence, applying the Faà di Bruno formula [22, p. 224-226]
for expanding the derivative of the composition of ∆(.) and qst(.) gives

ν(q)(u) =

q∑
l=1

1

l!
∆(l) (qst(u))

∑
is∈N0:i1+···+il=q

q!

i1!i2! . . . il!

l∏
s=1

q
(is)
st (u), q ∈ N0,

which readily leads to ν(q)(0+) = ν(q)(1−) = 0 since the exponential decays faster than any polynomi-
als. See Figure 5 for an illustration of ΨH built with (10) and (13).

We are now in a position to state our second main result.

Theorem 3. Let N ≥ 2 and
(
ΩN ,FN ,PN

)
be a probability space supporting N i.i.d. standard

Gaussian random variables G1:N . Therefore, there exists an extension (Ω,F ,P) supporting a fractional
Brownian motion BH such that ∀p ∈ (0, 1], for all r ∈ N0 there exist a ReLU neural network B̃HN,p :

RN+1 → R and a finite random variable C ≥ 0 (independent from N and p) such that

P

(
sup
t∈[0,1]

∣∣∣BH(t)− B̃HN,p(t, G1:N )
∣∣∣ ≤ CN−H (1 + log(N))

1/2

)
≥ 1− p.

Additionally, B̃HN,p is composed by

1. Oc
(

log
(

NρN
(1+log(N))1/2

))
hidden layers,

2. Oc
(
N1+H+1

2r log
(

NρN
(1+log(N))1/2

)(
ρN

(1+log(N))1/2

) 1
2r

)
neurons and parameters,

with the same ρN defined in Theorem 2. The constants in Oc (.) depend on r and H.
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2.4 Discussion

In Table 1 we compare the asymptotic architecture bounds between a BM and a fBm. Note that the
BM benefits from a natural construction of the F-S wavelet through ReLU functions. In comparison,
the fBm construction suffers from 1) an additional approximation of the wavelet ΨH and 2) a larger
bound on the sum over IN , which has only a log impact in the asymptotic NN architecture (see details
in the proof). Therefore, both models have the same asymptotic depth (with a constant depending on
r) and a very close complexity in terms of the latent dimension N .

BM fBm

error tolerance (TOL) N−1/2 N−H

depth log
(
TOL−1

)
log
(
TOL−1

)
complexity TOL−2 log

(
TOL−1

)
TOL−( 1

H
+ζ) log

(
TOL−1

)
Table 1: For a given confidence probability- p, asymptotic complexity rates with respect to
tolerance error (TOL). The parameter ζ can be taken arbitrary small, constants depending on
H, p and ζ > 0 are omitted.

The takeaway from these results is that a NN with N Gaussian r.v. as inputs for approximating a
process with a time regularity H (and an approximation error N−H up to log-term) may have at most
a depth logN and a complexity N logN . Although the set IN is not explicit for finding the optimal
fBm NN parameters, this part can be achieved through the optimization of the GAN model with the
appropriate architecture detailed in Sub-Section 3.2.

3 Proofs

In this section we will discuss the constructive proofs of the ReLU NN that appear in the main results.
Recall the output expression of a 1-hidden layer NN given some input x ∈ R and parametrized by

θ =
{
w

(1)
k , w

(2)
k , b

(1)
k , b(2)

}K
k=1

is

K∑
k=1

w
(2)
k σ

(
w

(1)
k x+ b

(1)
k

)
+ b(2), (14)

with σ(x) := max(0, x) the ReLU function. Similarly, a multi-layer NN is just multiple compositions
of σ with (14) between different hidden layers. For readers interested in having references on approxi-
mation properties of NN, we may refer to [27, Theorem 1 p.70] for L2 error using single hidden layer
NN, to [33, Corollary 6.4 p.170] for uniform approximation, and to a more recent paper [38] which has
shown some uniform convergence rate for multi-layer NN.

3.1 NN representation of BM

In the following proof of Theorem 2 we will restrict to N ∈ M =
{

2n+1, n ∈ N
}
. However note

that if one wants to choose a N /∈ M, it will neither impact the error nor the complexity bounds in
Theorem 2. Indeed, it suffices to take n =

⌊
log(N)
log(2) − 1

⌋
andN ′ = 2n+1 such thatN ′ ∈ (N2 , N ], and then

set B̃p,N (t, G1:N ) := B̃p,N ′ (t, G1:N ′). Regarding the error bound and complexity w.r.t. N , use those
for N ′ by easily adjusting constants: indeed, since N ′ ≤ N , it follows that ρN ′ ≤ ρN , 1

(1+log(N ′)) ≤
1

1−log(2)
1

(1+log(N)) for the complexity bound and N ′
−1/2

(1 + log(N ′))1/2 ≤
√

2N−1/2(1 + log(N))1/2

for the error bound.
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From now on, N = 2n+1. For ease of notation, let

sj,k(t) :=
ψj,k(t)

2j/2
= ψ

(
2jt− k

)
∈ [0, 1], (15)

be the normalized F-S wavelet, where ψ = ψFS in this section. Then, in view of (5) and Lemma 1, the
objective is to find a ReLU NN with N standard Gaussian variables and the time t as inputs, that can
approximate with uniform error and high probability

BN (t) = G1t+

n∑
j=0

2j−1∑
k=0

2−(j/2+1)sj,k(t)Gj,k. (16)

The key advantage with the F-S wavelet (4) is that the mother wavelet ψ can be built easily with 3

ReLUs and 9 parameters such as

ψ(x) = 2

(
σ(x)− 2σ

(
x− 1

2

)
+ σ (x− 1)

)
. (17)

Clearly a product operation in (16) is required between the inputs Gj,k (i.e. the latent space in a
GAN setting) and the normalized wavelets sj,k just built (see Figure 1). Since such an operation is
not natively done in feedforward network, let study how to approximate it.

t

1

σ

σ

σ

/
sj,k(t)

2j

2j

2j
−k

−(k + 1/2)

−(k + 1)

2

−4

2

Figure 1: Neural network construction of a normalized Faber-Schauder basis function (15).
The circles filled with σ represent a ReLU function, while the ones with a / represent the
identity function.

3.1.1 How to make a product with a NN

Let h(x) = x2. The key observation in [38, Proposition 2] is that h can be approximated by piece-wise
linear interpolation

h̃`(x) = x−
∑̀
j=1

ψ[◦j](x)

22j
, (18)

with

ψ[◦j](x) := ψ ◦ · · · ◦ ψ︸ ︷︷ ︸
j times

(x), (19)

such that

sup
x∈[0,1]

∣∣∣h(x)− h̃`(x)
∣∣∣ = 2−2(`+1).

The expression (18) can be interpreted as a NN approximation with ` hidden layers, where each
composition in (19) is just the sum of all translated positions of a F-S wavelets, i.e. ∀j ≥ 0, ψ[◦j+1](x) =
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Figure 2: Plot of ψ[◦j] for j = {1, 2, 3} (a); approximation of h(x) = x2 with h̃` for ` = {1, 2}

∑2j−1
k=0 ψ

(
2jx− k

)
. Therefore, instead of making a linear combination of such functions built through

a long single hidden layer, the benefit of increasing the depth of the network allows to increase at a
geometric rate the number of wavelets and to reduce the complexity cost from 3× 2`−1 to 3` neurons.

Additionally, one shall be aware that h̃` does approximate the square function only inside the
interval [0, 1] (see Figure 2b). Therefore we introduce a new function

∨
h`(x) = h̃` (|x|) = h̃` (σ(x) + σ(−x)) , (20)

which applies a ReLU absolute value on the input. Obviously
∨
h` extends the approximation of h on

[−1, 1] such that

sup
|x|≤1

∣∣∣∣h(x)−
∨
h`(x)

∣∣∣∣ = 2−2(`+1). (21)

The NN construction of (20) requires `+1 hidden layers and Oc (`) neurons and parameters (see Figure
3).

x

σ

σ /

1

1

σ

σ

σ

σ

σ

σ

/ ∨
h2(x)

1

−1

1

1

1

1

1

−1/2

−1

1

−1/2

1

−1/2

−1/8

1/4

−1/8

2

−4

2

Figure 3: Neural network architecture of
∨
h` with ` = 2. Lighter arrows refer to similar

parameters which can easily be inferred from (17). For implementation purpose, one can
obviously bypass the identity function in the middle of the network which is put here for the
sake of clarity.

Once the square operation is approximately synthetized through a ReLU NN, we can leverage
the polarization identity to get the product operation (x, y) 7→ xy. Because the above approximation

9



(21) is valid only on the interval [−1, 1], it is useful to use a polarization identity with some flexible
rescalings of x and y. It writes, for any a, b > 0,

xy = ab

(
−
( x

2a
− y

2b

)2

+
( x

2a
+

y

2b

)2
)
.

The following Proposition gives a uniform error bound on the approximation of the product with a
ReLU NN.

Proposition 4. Let k(x, y) := xy. Then, for any ` ∈ N0, for given a > 0 and b > 0,

1. there exists a NN k̃a,b` : R2 → R with `+ 1 hidden layers such that

sup
x,y:|x|≤a,|y|≤b

∣∣∣k(x, y)− k̃a,b` (x, y)
∣∣∣ ≤ ab2−(2`+1); (22)

2. if x = 0 or y = 0, then k̃a,b` (x, y) = 0;

3. the ReLU NN k̃a,b` can be implemented with no more than Oc (`) complexity and a depth `+1 :=⌈
1

2 log(2) log
(
ab
ε

)
− 1

2

⌉
+ 1, where ε is the error tolerance in sup norm.

Proof. It is enough to set

k̃a,b` (x, y) := ab

(
−
∨
h`

( x
2a
− y

2b

)
+
∨
h`

( x
2a

+
y

2b

))
and to apply (21), while observing that when |x| ≤ a and |y| ≤ b, x

2a ±
y
2b ∈ [−1, 1].

3.1.2 Final approximation of BN

Based on Proposition 4, it seems that we can deduce a uniform bound on the product sj,k(t)Gj,k by a
linear combination of composition functions of ReLUs (i.e. a multi-layer NN). Nevertheless, recall that
(22) only holds for |x| ≤ a and |y| ≤ b . Thus, although it is clear from (15) that for all t ∈ [0, 1] we have
sj,k(t) ∈ [0, 1], the random variables Gj,k need however to be bounded in order to use Proposition 4:
it can be made only with some probability.

Proposition 5. Let N ∈ N0 and p ∈ (0, 1], set

ρN = −Φ−1
( p

2N

)
≥ 0,

with Φ−1 the quantile function of the normal distribution, and let G1:N be i.i.d. standard Gaussian
r.v.. Then

P (∀i = 1, . . . , N : |Gi| ≤ ρN ) ≥ 1− p.

Proof. Clearly, the probability on the above left hand side equals

1− P

(
N⋃
i=1

{
|Gi| ≥ ρN

})
≥ 1− 2NΦ (−ρN ) = 1− p.

Therefore combining Propositions 4 and 5 with a = 1 and b = ρN , we can define

k̃1,ρN
` (sj,k(t), Gj,k) := ρN

(
−
∨
h`

(
sj,k(t)

2
− Gj,k

2ρN

)
+
∨
h`

(
sj,k(t)

2
+
Gj,k
2ρN

))
, (23)

which can be implemented with `+ 2 hidden layers (since we need an additional one to build the sj,k)
and Oc (`) neurons and parameters (see Figure 4).

10



t

1

σ

σ

σ

/
sj,k(t)

Gj,k

∨
h`

∨
h`

/
1/2

1/2

− 1
2ρN

1
2ρN

−ρN

ρN

k̃1,ρN` (sj,k(t), Gj,k)

Figure 4: Neural network architecture of k̃1,ρN` (sj,k(t), Gj,k) .

Remark. The key advantage of (23) over the polarization identity in [38, Equation (3) p. 8] is that
ρN can be directly parameterized inside the NN instead of pre-normalizing Gj,k for the approximation
of G2

j,k.

Let B̃N be the NN approximation of (16) such that

B̃N (t) = k̃1,ρN
` (t, G1) +

n∑
j=0

2j−1∑
k=0

2−(j/2+1)k̃1,ρN
` (sj,k(t), Gj,k) , (24)

with k̃1,ρN
` defined in (23). Therefore, on the event {|Gi| ≤ ρN : i = 1, . . . , N} which has a probability

greater than 1− p, one has

sup
t∈[0,1]

∣∣∣BN (t)− B̃N (t)
∣∣∣ ≤ sup

t∈[0,1]

∣∣∣tG1 − k̃1,ρN
` (t, G1)

∣∣∣
+ sup
t∈[0,1]

∣∣∣∣∣∣
n∑
j=0

2j−1∑
k=0

2−(j/2+1)
(
sj,k(t)Gj,k − k̃1,ρN

` (sj,k(t), Gj,k)
)∣∣∣∣∣∣

(from Proposition 4 and since sj,k(t) ∈ [0, 1] and |Gj,k| ≤ ρN )

≤ ρN2−(2`+1)

1 +

n∑
j=0

2j−1∑
k=0

2−(j/2+1)


= ρN2−(2`+1)

(
1 +

N1/2 − 1

2
(√

2− 1
)) (recall N = 2n+1)

≤ ρN2−2`N1/2.

Hence, with probability at least 1− p, combining Lemma 1 with the above yields to

sup
t∈[0,1]

∣∣∣B(t)− B̃N (t)
∣∣∣ ≤ C(6)N

−1/2
(
1 + log (N)

)1/2
+ ρN2−2`N1/2.

It follows that if we choose

` =

⌈
1

2 log(2)
log

(
NρN(

1 + log (N)
)1/2

)⌉
∨ 1, (25)

(7) is proved with B̃N,p(t, G1:N ) := B̃N (t). All in all, based on Figure 4, the architecture required for
the N products in (24), i.e. N sub-networks, yield to a total of at most ` + 2 hidden layers and a
complexity Oc (N`). Replacing with (25) gives the stated bounds.
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3.2 NN representation of fBm

Now that we are acquainted with the case of BM, we can move on to the more general case which
requires additional arguments. In view of (12) with a fixed γ > 0, the goal here is to prove that there
exists a ReLU NN approximating uniformly

BHN (t) =
∑

(j,k)∈IN

2−jH
(
ΨH
(
2jt− k

)
− ΨH(−k)

)
Gj,k, (26)

with Card (IN ) ≤ N and Gj,k ∼ N (0, 1). The proof will be composed in two parts. First we will
discuss how ΨH can be approximated by ReLU basis functions in R. Second, we will see how to control
the error on the product with Gaussians in (26). In this section we will write ψM(·) = ψ(·) for the
Lemarié-Meyer wavelet (10) with ν(·) as in (13).

3.2.1 Approximation of ΨH

We want to show that for all ε ∈ (0, 1) there exists a ReLU NN g̃ such that

sup
u∈R
|ΨH(u)− g̃(u)| ≤ ε. (27)

Note that we can’t apply the universal approximation theorem [7, Theorem 1] which holds for contin-
uous functions with compact support. To tackle the infinite support, the strategy will consist of first
approximating ΨH in some interval [−umax, umax], and then using the fast decay rate of |ΨH(u)| for
|u| > umax. Indeed, since by construction ψ̂ and its derivatives vanish in the neighborhood of ξ = 0,
Ψ̂H defined in (9) is C∞ with compact support for any parameter H ∈ R. So for all (m, q) ∈ N2, we
claim that ∣∣∣Ψ (q)

H (u)
∣∣∣ ≤ CH−q,m

1 + |u|m+1 , (28)

where CH−q,m is a constant depending on H−q and m. The property for q = 0 is clear: use the inverse
Fourier transform and m+ 1 integration by parts, taking advantage that the derivatives of Ψ̂H vanish
at the boundary of its support (see discussion after (13)). For q 6= 0, observe that Ψ (q)

H (u) = ΨH−q(u)

and the property follows. Now we proceed to (27), by following some ideas based on [38, Theorem 1]
with some variations. In (28) we have a degree of freedom with the choice of the parameter m, it will
be fixed at the end of the proof.

Consider a uniform grid of M points {ui = (i− 1)δ − umax}Mi=1 with M > 1 and δ = 2umax

M−1 on the
domain [−umax, umax], assuming δ ≤ 1

2 . The parameter umax > 0 will be fixed later. Additionally, for
i = 1, . . . ,M , we define a triangular function

φi(u) := φ

(
u− ui
δ

)
,

where

φ(t) := σ(t+ 1) + σ(t− 1)− 2σ(t),

and with the following (obvious) properties:

1. φi(·) is symmetric around ui,

2. sup
u∈R
|φi(u)| = φi(ui) = 1,

3. supp(φi) ∈ [ui − δ, ui + δ],

4.
∑M
i=1 φi(u) ≡ 1, for u ∈ [−umax, umax].

12



The function φi is nothing else than another FS wavelet ψFS
j,k with slightly different scaling and position

parameters. Now let r ∈ N0, consider a localized Taylor polynomial function

g1(u) :=

M∑
i=1

φi(u)Pi(u), (29)

where Pi is the Taylor polynomial of degree (r − 1) of ΨH ∈ C∞ at the point ui given by

Pi(u) :=

r−1∑
q=0

Ψ
(q)
H (ui)

q!
(u− ui)q.

To approximate the q-power function, we will need the following result.

Proposition 6. Let ` ∈ N0, a > 0 and b > 0. For any q ∈ N, define recursively the ReLU NN with at
most (q − 1)(`+ 1) hidden layers by

y 7→ ỹq := k̃
b,bq
`

(
y, ỹp−1

)
, q ≥ 2,

with by convention ỹ0 := 1, ỹ1 := y, where k̃a,b` is defined in Proposition 4 and where

bq := bq−1
(

1 + 2−(2`+1)
)q−2

.

It is such that

sup
y:|y|≤b

∣∣yq − ỹq∣∣ ≤ bq ((1 + 2−(2`+1)
)q−1

− 1

)
, (30)

sup
x,y:|x|≤a,|y|≤b

∣∣∣xyq − k̃a,bq+1

`

(
x, ỹq

)∣∣∣ ≤ abq ((1 + 2−(2`+1)
)q
− 1
)
. (31)

Proof. We set η := 2−(2`+1) and we proceed by induction. The inequality (30) holds for q = 2 thanks
to Proposition 4. Now take q ≥ 3, assume (30) holds for q − 1. Clearly, this implies

sup
|y|≤b

∣∣∣ỹq−1
∣∣∣ ≤ bq−1 (1 + η)

q−2
= bq. (32)

Therefore,

sup
|y|≤b

∣∣yq − ỹq∣∣ ≤ sup
|y|≤b

∣∣∣yq − y ỹq−1
∣∣∣+ sup
|y|≤b

∣∣∣y ỹq−1 − ỹq
∣∣∣

≤ b sup
|y|≤b

∣∣∣yq−1 − ỹq−1
∣∣∣+ sup
|y|≤b

∣∣∣y ỹq−1 − k̃b,bq`

(
y, ỹq−1

)∣∣∣
≤ bbq−1

(
(1 + η)q−2 − 1

)
+ bbq−1(1 + η)q−2η

= bq
(
(1 + η)q−1 − 1

)
where, at the last inequality, we have used Proposition 4 combined with the bound (32). We are done
with (30). Similarly for (31) we get

sup
|x|≤a,|y|≤b

∣∣∣xyq − k̃a,bq+1

`

∣∣∣ (x, ỹq) ≤ a sup
|y|≤b

∣∣yq − ỹq∣∣+ sup
|x|≤a,|y|≤b

∣∣∣x ỹq − k̃a,bq+1

`

(
x, ỹq

)∣∣∣ .
Combining (30) and Proposition 4 with (32), we get (31).
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We are now in a position to prove (27). Given the support property of φi, the strategy consists of
splitting the error approximation in three pieces:

1. A classical Taylor bound on the main interval yield to

sup
|u|≤umax

|ΨH(u)− g1(u)| = sup
|u|≤umax

∣∣∣∣∣
M∑
i=1

φi(u) (ΨH(u)− Pi(u))

∣∣∣∣∣
≤ 2 max

i=1,...,M
sup

u∈supp(φi)
|ΨH(u)− Pi(u)|

since u is in the support of at most two φi’s and |φi(u)| ≤ 1,

≤ 2 max
i=1,...,M

sup
u∈supp(φi)

∣∣∣Ψ (r)
H (u)

∣∣∣
r!

(2δ)r

≤ 2

r!
CH−r,m(2δ)r,

using (28). Let g̃i,q(·) be the ReLU NN approximation of u 7→ φi(u)(u − ui)
q using (31) with

|φi(u)| ≤ 1 = a and |u− ui| ≤ 2δ = b. In view of (29), set

g̃(u) :=

r−1∑
q=0

1

q!

M∑
i=1

Ψ
(q)
H (ui)g̃i,q(u). (33)

Observe, from statement (2) of Proposition 4, that we have g̃i,q(u) = 0 for u /∈ supp(φi). So using (31)
(setting η := 2−(2`1+1) with `1 ∈ N0) leads to

sup
|u|≤umax

|g1(u)− g̃(u)| ≤
r−1∑
q=0

sup
|u|≤umax

∣∣∣Ψ (q)
H (u)

∣∣∣
q!

M∑
i=1

sup
|u|≤umax

|φi(u)(u− ui)q − g̃i,q(u)|

≤ 2r max
q=0,...,r−1

CH−p,m

∞∑
q=1

(2δ)q
((1 + η)q − 1)

q!
. (34)

Using that 2δ ≤ 1 and η ≤ 1/2, we easily get that the above right hand side is bounded by
r δ η Ce maxp=0,...,r−1 CH−p,m for some universal constant Ce. To sum up, we have proved

sup
|u|≤umax

|ΨH(u)− g̃(u)| ≤ CH,r,m (δr + δη)

where, here and in what follows, CH,r,m stands for a finite positive constant depending on H, r,m,
which value may change from line to line, without changing its name. By taking

δ =

(
ε

6CH,r,m

) 1
r

∧ 1

2
= Oc

(
ε

1
r

)
, η ≤ ε

6CH,r,mδ
= Oc

(
ε1− 1

r

)
, (35)

we have

sup
|u|≤umax

|ΨH(u)− g̃(u)| ≤ ε

3
.

The condition on η is satisfied for

`1 =

⌈
1

2 log(2)
log

(
6CH−r,mδ

ε

)
− 1

2

⌉
∨ 1 = Oc

(
log
(
ε−(1− 1

r )
))

, (36)
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2. Focusing on the short interval |u| ∈ [umax, umax + δ] where u belongs to supp(φM ) only, write

sup
|u|∈[umax,umax+δ]

|ΨH(u)− g1(u)| = sup
|u|∈[umax,umax+δ]

|ΨH(u)− φM (u)PM (u)|

≤ sup
|u|∈[umax,umax+δ]

|ΨH(u)|+ sup
|u|∈[umax,umax+δ]

|ΨH(u)− PM (u)|

≤
(28)

CH,m

1 + um+1
max

+
CH−r,m

1 + um+1
max

δr

r!

≤
(35)

CH,r,m
1 + um+1

max

.

Similarly to the bound (34) but taking advantage of the fast decay of supu∈[umax,umax+δ]

∣∣∣Ψ (q)
H (u)

∣∣∣ yields
to

sup
|u|∈[umax,umax+δ]

|g1(u)− g̃(u)| ≤ CH,r,m
δ η

1 + um+1
max

.

All in all, and using δ η ≤ 1/4,

sup
|u|∈[umax,umax+δ]

|ΨH(u)− g̃(u)| ≤ CH,r,m
1 + um+1

max

≤ ε

3

for a new constant CH,r,m at the first inequality and from the choice

umax :=

(
3CH,r,m

ε

) 1
m+1

(37)

at the last inequality.
3. Finally, on the last interval |u| ∈ [umax + δ,+∞), g̃(.) vanishes and from (28)-(37), we readily get

sup
|u|∈[umax+δ,+∞)

|ΨH(u)− g̃(u)| ≤ CH,m

1 + um+1
max

≤ ε

3
.

All in all, (27) is proved with the ReLU NN (33). Collecting previous asymptotics, we get

M =
2umax

δ
+ 1 = Oc

(
ε−

1
m+1 ε−

1
r

)
. (38)

3.2.2 Error control including Gaussian variables

We are back to the approximation of (26). For (j, k) ∈ IN we set

Yj,k(t) := ΨH
(
2jt− k

)
− ΨH(−k) and Ỹj,k(t) := g̃

(
2jt− k

)
− g̃(−k)

for its ReLU NN approximation. In view of (26), let us derive an error bound of the product Yj,k(t)Gj,k
for t ∈ [0, 1] and Gj,k a standard Gaussian random variable. From (27) with ε ≤ 1 and (28), we get

sup
t∈[0,1]

∣∣∣Ỹj,k(t)
∣∣∣∨ sup

t∈[0,1]

|Yj,k(t)| ≤ 2ε+ 2 sup
u∈R
|ΨH(u)| ≤ 2 (1 + CH,m) := C̄H . (39)

Similarly to (23), we can rewrite for t ∈ [0, 1] and (j, k) ∈ IN the NN product approximation of
Ỹj,k(t)Gj,k with `2 ∈ N0 as

k̃C̄H ,ρN`2

(
Ỹj,k(t), Gj,k

)
= C̄HρN

(
−
∨
h`2

(
Ỹj,k(t)

2C̄H
− Gj,k

2ρN

)
+
∨
h`2

(
Ỹj,k(t)

2C̄H
+
Gj,k
2ρN

))
. (40)
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Let us work on the event {|Gj,k| ≤ ρN : (j, k) ∈ IN} which has a probability greater than 1 − p and
let us focus on the approximation error of the first term on the right-hand side of (40):

sup
t∈[0,1]

∣∣∣∣∣∨h`2
(
Ỹj,k(t)

2C̄H
− Gj,k

2ρN

)
−
(
Yj,k(t)

2C̄H
− Gj,k

2ρN

)2
∣∣∣∣∣

≤ sup
t∈[0,1]

∣∣∣∣∣∣∨h`2
(
Ỹj,k(t)

2C̄H
− Gj,k

2ρN

)
−

(
Ỹj,k(t)

2C̄H
− Gj,k

2ρN

)2
∣∣∣∣∣∣

+ sup
t∈[0,1]

∣∣∣∣∣∣
(
Ỹj,k(t)

2C̄H
− Gj,k

2ρN

)2

−
(
Yj,k(t)

2C̄H
− Gj,k

2ρN

)2
∣∣∣∣∣∣

≤
(21)−(39)

2−2(`2+1) +
supt∈[0,1]

∣∣∣Ỹj,k(t)− Yj,k(t)
∣∣∣

2C̄H

 supt∈[0,1]

∣∣∣Ỹj,k(t)
∣∣∣+ supt∈[0,1] |Yj,k(t)|

2C̄H
+
|Gj,k|
ρN


≤

(27)
2−2(`2+1) +

2ε

C̄H
.

So replacing in (40) and similarly for the second term, it entails

sup
(j,k)∈IN

sup
t∈[0,1]

∣∣∣Yj,k(t)Gj,k − k̃C̄H ,ρN`2

(
Ỹj,k(t), Gj,k

)∣∣∣ ≤ 2−(2`2+1)C̄HρN + 4ερN .

For the final ReLU NN approximation of (26), define B̃HN as

B̃HN (t) :=
∑

(j,k)∈IN

2−jH k̃C̄H ,ρN`2

(
g̃
(
2jt− k

)
− g̃(−t), Gj,k

)
. (41)

Combining (26)-(12)-(41) gives (still on the event {|Gj,k| ≤ ρN : (j, k) ∈ IN})

sup
t∈[0,1]

∣∣∣BH(t)− B̃HN (t)
∣∣∣ ≤ sup

t∈[0,1]

∣∣BH(t)−BHN (t)
∣∣+ sup

t∈[0,1]

∣∣∣BHN (t)− B̃HN (t)
∣∣∣

≤ C(12)N
−H (1 + log(N))

1/2
+N

(
2−(2`2+1)C̄HρN + 4ερN

)
recalling that Card (IN ) ≤ N . It suffices to ensure that the second term at the right-hand side is
bounded by 2N−H (1 + log(N))

1/2 thanks to the choice

ε =
(1 + log(N))

1/2

4ρNNH+1
∧ 1, (42)

`2 =

⌈
1

2 log(2)
log

(
C̄HρNN

H+1

(1 + log (N))
1/2

)⌉
∨ 1 = Oc

(
log
(
ε−1
))
. (43)

3.2.3 Architecture

The total architecture of g̃ is composed by M sub-networks, where each g̃i,q is built as a cascade of q
NN with (`1 + 1) hidden layers, i.e. (q− 1) NN from Proposition 6 and 1 more from the product with
φi. Therefore, g̃ requires at most a depth Oc (`1) and a complexity Oc (M`1), with constants clearly
depending on r. Using M in (38) and `1 in (36), we get the architecture bounds as a function of the
accuracy ε, for just one approximation of ΨH with g̃.

As mentioned above, Ỹj,k is composed of 2g̃ NN and so it has the same depth but twice the
complexity (number of neurons and parameters) of g̃. Additionally, (41) requires `2 + 1 hidden layers
to perform the multiplications with the Gaussian variables. Finally, all these operations are computed
for N different scaling/transition parameters (j, k). All in all, the total architecture of B̃HN is composed
of at most an order
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1. Oc (`1 + `2) hidden layers,

2. Oc
(
N
(
M`1 + `2

))
neurons and parameters.

Replacing with (35), (38) and (43) give the architecture bounds with respect to ε, i.e.

1. hidden layers:

Oc (`1 + `2) = Oc
(

log
(
ε−(1− 1

r )
)

+ log
(
ε−1
))

= Oc
(
log
(
ε−1
))
,

where we have observed that the exponent inside the log term can be put in the Oc since the
constants are allowed to depend on r in our notation;

2. neurons and parameters:

Oc
(
N
(
M`1 + `2

))
= Oc

(
N
(
ε−

1
2r log

(
ε−(1− 1

r )
)

+ log
(
ε−1
)))

= Oc
(
Nε−

1
2r log

(
ε−1
))
,

with equilibrium r = m + 1 in (38). Remembering the choice (42) of ε w.r.t. N gives the
announced result.
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A Complements

A.1 Proof of Lemma 1

Let us bound the truncated approximation of (5) for all n ∈ N,

sup
t∈[0,1]

∣∣∣∣∣∣B(t)−

G1t+

n∑
j=0

2j−1∑
k=0

2−(j+1)ψFS
j,k(t)Gj,k

∣∣∣∣∣∣ = sup
t∈[0,1]

∣∣∣∣∣∣
∞∑

j=n+1

2j−1∑
k=0

2−(j+1)ψFS
j,k(t)Gj,k

∣∣∣∣∣∣
≤

∞∑
j=n+1

2−(j/2+1) sup
0≤k≤2j−1

|Gj,k|

≤ C
∞∑

j=n+1

2−(j/2+1)
(
log(j + 2j + 1)

)1/2 a.s.

≤ C
∞∑

j=n+1

2−
1
2 (j+1) (1 + j)

1/2

≤ C 2−
1
2 (n+1) (n+ 1)

1/2

≤ C N−1/2
(
1 + log(N)

)1/2
,

where C is a non-negative random variable which may change from line to line. In the third line, use
the fact that the wavelets have disjoint support in k and so for fixed j, any t belongs to the support of
at most one ψFS

j,k, with
∥∥∥ψFS

j,k

∥∥∥
∞
≤ 2j/2. In the fourth, invoke [1, Lemma 2]; in the fifth the inequality

holds for j large enough; in the sixth use a classical integral test, and lastly replace with N .

A.2 Wavelet representation

Integrals are computed numerically using the function quad from the package scipy in Python.
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Figure 5: Lemarié-Meyer wavelet constructed with (13) for γ = 2
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