Molecular excited states through a machine learning lens - Archive ouverte HAL
Article Dans Une Revue Nature Reviews Chemistry Année : 2021

Molecular excited states through a machine learning lens

Pavlo O Dral
  • Fonction : Auteur
  • PersonId : 1099354
Mario Barbatti

Résumé

Theoretical simulations of electronic excitations and associated processes in molecules are indispensable for fundamental research and technological innovations. However, such simulations are notoriously challenging to perform with quantum mechanical methods. Advances in machine learning open many new avenues for assisting molecular excited-state simulations. In this Review, we track such progress, assess the current state of the art and highlight the critical issues to solve in the future. We overview a broad range of machine learning applications in excited-state research, which include the prediction of molecular properties, improvements of quantum mechanical methods for the calculations of excited-state properties and the search for new materials. Machine learning approaches can help us understand hidden factors that influence photo-processes, leading to a better control of such processes and new rules for the design of materials for optoelectronic applications.
Fichier principal
Vignette du fichier
NRC_Dral-Barbatti_ML-ES_preprint.pdf (872.33 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03231653 , version 1 (21-05-2021)

Identifiants

Citer

Pavlo O Dral, Mario Barbatti. Molecular excited states through a machine learning lens. Nature Reviews Chemistry, 2021, ⟨10.1038/s41570-021-00278-1⟩. ⟨hal-03231653⟩
371 Consultations
1027 Téléchargements

Altmetric

Partager

More