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Abstract | Theoretical simulations of electronic excitations and associated processes in 

molecules are indispensable for fundamental research and technological innovations. However, 

such simulations are notoriously challenging to perform with quantum mechanical (QM) 

methods. Advances in machine learning (ML) open many new avenues for assisting molecular 

excited-state simulations. In this Review, we track such progress, assess the current state-of-

the-art and highlight the critical issues to solve in the future. We overview a broad range of ML 

applications in excited-state research, which include the prediction of molecular properties, 

improvements of QM methods for the calculations of excited-state properties and the search of 

new materials. ML approaches can help us understand hidden factors that influence photo-

processes, leading to a better control of such processes and new rules for the design of materials 

for optoelectronic applications. 

 

The Schrödinger equation for a fixed nuclear configuration of a molecule predicts that the 

electrons can only occupy specific quantum configurations, named electronic states. The state 

corresponding to the lowest energy is called ground state and all the others are excited 

electronic states. In this Review, we will refer to the latter merely as excited states as we 

exclusively focus on this type of excitations. 

Excited states are at the core of a myriad of phenomena.1,2 They are crucial for Earth’s 

biosphere, being responsible for the first step in harvesting the energy in sunlight through 
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photosynthesis.3 They are equally vital for vision and bioluminescence.4 They play a role in 

mutagenesis and carcinogenesis.5 In technology, excited states are at the basis of 

optoelectronics, with applications in photovoltaics and light-emitting diodes (LEDs), for 

example.6-8 In the lab, many advanced and routine analytic chemistry tools depend on them.9,10 

Under low levels of radiation, molecules are usually in their ground state. However, excited 

states can be activated in diverse ways, through photo-absorption, particle collisions, or bond 

dissociation. Photo-excited states can be populated using a wide range of wavelengths. For 

example, in organometallic compounds, electrons may be excited by infrared (IR) and visible 

(vis) radiation,11 whereas in organic materials, they are typically excited by radiation in the 

visible to ultraviolet (UV) region.12 Inner-shell electrons are excited by X-rays.13 Upon 

excitation, a molecule remains in the excited states' manifold until it either returns to the ground 

state or forms a new compound, through isomerization, dissociation, bond rearrangement, or 

reaction with other molecules. During this process, the photoenergy heats vibrational modes 

through either internal conversion or intersystem crossing and, occasionally, it may be 

reemitted through either fluorescence or phosphorescence. In many cases, the nuclear 

conformation can dramatically change, reaching regions where the Born–Oppenheimer 

approximation loses validity (conical intersections[G]).14 Depending on the system, the 

excited-state relaxation may take from tens of femtoseconds (internal conversion) to a few 

seconds (phosphorescence).15 Many computational methods, such as complete active space 

perturbation theory to second order (CASPT2) or time-dependent density-functional theory 

(TD-DFT), are specifically developed to predict molecular excited states (see Box 1 for a brief 

description of these and few other popular methods in excited-state research). When simulating 

excited states, we may be interested in time-independent features such as potential energy 

surfaces (PES), or in knowing how the molecule evolves with time.16,17 We may also be 

interested in statistical treatments, for example, for the prediction of reaction rates.18 Often, we 

need a combination of approaches, for instance, when we propagate dynamics using static 

properties. 

The electronic density of excited states is exceedingly more complex than that of the ground 

state. It may involve unpaired electrons and multiple electron excitations. Moreover, while the 

ground state may be isolated from the other states by few eV, excited states tend to bundle in 

narrow spectral ranges, mixing their characters and exchanging their order in response to small 

nuclear displacements.16 These features make predicting excited states strikingly more 
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challenging and costly than ground states (FIG. 1). Whenever the ground state shares such 

features, such as in radicals or metal complexes, its prediction becomes problematic, too.19 

The accuracy of the QM calculations of molecular excited-state energies in routine calculations 

with commonly used methods is low, typically 0.2 eV.20,21 Making things worse, the errors are 

not systematic and the accuracy may depend on the state type. For instance, while localized 

states may be predicted well, charge-transfer states are often misplaced by TD-DFT.22 This 

type of imbalance may lead to wrong topographies of the excited-state PES. The accuracy of 

the simulations has to be further sacrificed when a great number of excited-state calculations 

need to be performed, such as in dynamics simulations or high-throughput virtual screening 

(HTVS) of new chromophores. In these cases, more accurate QM approaches are too 

computationally expensive, and more affordable but less accurate methods are required. 

Machine learning (ML) opens the perspective of drastically reducing these costs without 

compromising the accurate description of excited states in different systems and for different 

properties (FIG. 2). The field of ML is itself rapidly evolving, with the development of a variety 

of approaches for simulations, analysis and design of molecular systems (see Box 2).23-25 

ML for excited states was used for the first time in 1990 to aid the identification of compounds 

structures from their UV absorption spectra.26 At that time, neural networks (NN) were gaining 

attention in chemistry and related fields.27 Around the same time, another study was reported 

in which fluorescence spectra were used for a similar task.28 Unfortunately, this initial 

excitement about NNs was followed by a rather long hiatus of almost two decades (FIG. 3). 

The technology was apparently not ripe enough for widespread use, and the community was 

not convinced of the usefulness of ML in chemistry. Nevertheless, ML found its niche in the 

field of drug design, where it is currently used in the context of quantitative structure–activity 

relationship (QSAR) and quantitative structure–property relationship (QSPR). 

The application of a special type of ML technique called supervised learning (Box 3) for drug 

design influenced later studies on excited states, in which ML was applied to find the 

relationship between molecular structure and excited-state properties ranging from atomic- 

(such as molecular excitation energy) to macroscopic-scale (such as power conversion 

efficiency of a solar cell) properties. Solving this task with ML dominates modern studies that 

appear at an ever-increasing pace since 2015, as evident from the literature surveyed in this 

Review. 
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Supervised learning enables extremely fast predictions of desired excited-state properties with 

little loss of accuracy.29 For example, ML trained on excitation energies — the most 

fundamental excited-state property — as a function of structure can be used for subsequent 

spectrum calculations,30-35 dynamics simulations,23,29,36-46 or to search for new materials that 

emit at a desired wavelength.47-49 The excited-state properties can be calculated with a QM 

method and then used to train a ML model, which then can be used as a surrogate for the QM 

method. ML can also be trained on experimentally measured data, making the ML approaches 

more accurate than affordable QM methods for the prediction of experimental properties.50 

Furthermore, experimental observables, such as the power conversion efficiency of a solar cell, 

which are extremely difficult (if not impossible) to simulate with QM methods, can be learned 

and predicted for new molecules with ML .51-64 One particular ML application in quantum 

chemistry that stands out because it changes the very basis of excited-state simulations is the 

use of supervised learning for the improvement of QM methods themselves, even by learning 

the wavefunctions.23,65 For example, speed and accuracy of configuration interaction (CI) 

approach can be drastically improved by using ML to select important configurations.66 

However, there are, not many studies yet reporting the use of such ML-improved QM methods 

for excited-state simulations. One notable example is a recent work in which kernel ridge 

regression (KRR, Box 3) was used to calculate atomic charge instead of self-consistent charges 

in TD-DFTB (see Box 1) that, in turn, was used to compute the excited-state potential 

energies.67 Given the abundance of QM methods for excited states and various examples of 

ML-improved QM methods,23,65 it is a matter of time until the latter become routine tools for 

computational chemists.  

Excited-state research benefits not just from supervised learning but also from other types of 

ML, which also started gaining attention. Unsupervised learning (Box 2) is useful to gain new 

insights from existing data — experimental and theoretical — that otherwise would be 

impossible or cumbersome to obtain by manual inspection.24,30,68-72 One of the first studies 

using unsupervised learning for excited states was reported in 2001,68 in which it was applied 

to understand the influence of microenvironment factors such as solvent accessibility and 

packing density on the fluorescence of proteins. A special class of unsupervised learning 

techniques, generative models, as well as reinforcement learning can be used to generate new 

compounds with desired excited-state properties automatically.73-78 

Semi-supervised learning79 is another ML approach, which is currently underappreciated in 

excited-state research. It leverages the advantages of both supervised and unsupervised 
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learning and learns from the data set in which only part of the data is labeled.79 The only 

example of its use in excited-state research is a recent model developed80 for fast and accurate 

determination of the multireference character. Such a diagnostic is extremely useful for 

choosing an appropriate QM method. 

In this Review, we discuss how ML techniques have been and can be used in excited-state 

simulations, particularly for predicting excited-state energies, simulating spectra, constructing 

surfaces and performing dynamics simulations, and designing optoelectronic materials. Our 

primary focus is on molecular systems, but we will adopt fuzzy boundaries, occasionally 

discussing supramolecular assemblies and solids. 

[H1] Energies 

Understanding how the energy of the electronic states depends on chemical composition and 

spatial arrangement of atoms is fundamental for a deep comprehension and control of the 

photo-processes. Thus, the development of ML models for learning excited-state energies as a 

function of the structure is getting attention. ML approaches not only can be incredibly faster 

than QM methods, but can also learn on experimental data and thus be more accurate than 

commonly used QM methods (assuming the experimental error is itself low enough).49,81 

A universal ML model would instantaneously predict the energy of multiple electronic states 

for any molecule in any configuration with the same accuracy of a high-level QM method. 

Such a model is yet to be developed because there are obstacles on many fronts and only partial 

solutions have been suggested so far. This is in contrast with the much more substantial 

progress in the development of a universal ML model for ground-state energies (ground-state 

ML potentials), for which existing models approach coupled-cluster accuracy for typical 

organic molecules.82 

In the next subsections, we discuss the main challenges and aspects impacting the development 

of ML models for excited-state energies. 

[H2] Complexity of electronic density 

One of the obstacles in learning excited-state energies is that excited-state electronic densities 

are much more complex and spatially spread than ground-state electronic density. Therefore, 

ML models developed for the prediction of ground-state energies will not necessarily work 

similarly well for the prediction of excited-state energies. Errors on the predicted excitation 
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energies can be 10 times larger than the errors on the ground-state energies when training 

various ML potentials with 3D structural descriptors (Box 2 and Box 3) on the same number 

of points, as it has been reported83 for a large and diverse set of molecules (QM8 dataset)84. 

Thus, if attempting to use such ML potentials, one may need substantially larger training sets 

to attain excited-state energies with the same accuracy of ground-state energies. 

The errors on the excitation energies can be further increased when employing ML potentials 

that use local descriptors and partition the energy into atomic contributions. In this case, the 

descriptor considers structural parameters within a cutoff distance. These models work rather 

well for ground-state energies and can be transferable, meaning that they can be trained on 

smaller molecules and make reasonable predictions for larger molecules.23 In excited states, 

these models exhibit substantially worse accuracy than models using global molecular 

representations, as was shown on the same QM8 dataset in a couple of independent studies.83,85  

[H2] Improving descriptors and models 

The limitations of popular ground-state ML potentials for the prediction of excited-state 

energies can be overcome by developing alternative ML models and descriptors tailored to the 

treatment of excited states. One of the most important aspects is the selection of the appropriate 

descriptors that best represent molecules for learning excited-state energies. This is a topic of 

intensive ongoing research. A low computational cost solution is the use of cheminformatics 

descriptors typically employed in drug design. These descriptors can be quickly derived from 

molecular structures and, because they were developed for various complicated molecular 

properties, they also work remarkably well for excited-state energies of molecules of very 

different sizes and compositions.49,81,86 Although these descriptors have not currently been used 

to learn different conformations of the same molecule, there is an indication that they can be 

combined with 3D information to obtain improved accuracy on the prediction of orbital 

energies.87 It is very beneficial to include information about many-body structural parameters 

(such as angular information) in addition to two-body parameters (such as radial information) 

for training ML models to better capture subtle geometrical changes.83 Descriptors inspired by 

drug-design studies can also include computationally affordable ground-state QM 

properties.47,48  

To ensure greater transferability and accuracy, ML models can be combined with QM methods 

in different ways (Box 3). Any such combination using QM method would obviously result in 

increased computational cost compared to pure ML approaches, which may be an obstacle 
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when a large number of predictions are necessary, for example, in high-throughput screening. 

A powerful way to achieve such a combination is to use ML to improve the QM calculation 

implicitly, making faster and possibly more accurate predictions of excited-state energies.67 

Another powerful way is to use a Δ-learning scheme88 to correct excited-state energies 

calculated with low-level and low-cost QM methods (Box 3). One advantage of the Δ-learning 

is that it explicitly corrects a QM method without the need to modify it. In this case, one is not 

limited to structural descriptors, but can also use readily available low-level QM descriptors 

such as orbital energies.50,84,89-92 This was shown already in 2004 in the pioneering study by 

GuanHua Chen and co-workers.89 

Alternatively, one can use transfer learning to train models on an abundant (easier available 

and therefore more plentiful) type of data and refine them with less abundant target type of 

data. An essential feature of transfer learning is that it can be applied to various combinations 

of abundant and targeted types of data, such as QM excitation energies for small (abundant) 

and large (target) molecules,93 or QM (abundant) and experimental (target) data. The latter 

approach was only used to learn molecular orbital energies.94 Co-kriging [G], a related 

approach, also bears the potential for learning excited-state energies by exploiting data of 

different types and availability, although it has only been demonstrated for bandgaps in solids95 

rather than molecular excited-state energies. 

[H2] Learning multiple states 

A severe obstacle for developing ML models for excited states is that multiple states must be 

calculated with the same accuracy. Several approaches have emerged to tackle this 

problem.45,46 One of them used a separate ML model for each state, as has been reported in a 

number of studies.31,32,37-39,41,43,46,83,84,96,97 Although this is the simplest approach, it has two 

main drawbacks. First, it may predict the wrong position of states relative to each other. 

Second, it ignores any correlation between energies of different states. In principle, these 

problems can be solved by learning energy gaps between states, but then errors will accumulate 

when many states are considered. Alternatively, one may learn all energy levels 

simultaneously, which was shown to improve the accuracy of ML models, although this 

approach may require a longer training time.35,43,44,46,98 

[H2] Reference data 

The performance of ML algorithms hinges on the size and diversity of the training sets25,99 and 

intensive investigations on how ML accuracy for excited-state properties depends on the 
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training set size are still required. Therefore, the limited availability of high-quality QM or 

experimental excited-state energies poses a big challenge for the performance of ML 

approaches  and only a handful of studies reported learning curves for both ground- and 

excited-state properties.43,83 These studies showed that both types of learning curves do behave 

similarly, but their exact shape strongly depends on the chosen model and data set and that, for 

some combinations of ML model and data set, learning ground-state properties is not easier 

than learning excited-state properties.43 One of the few datasets of energies attained using QM 

methods (such as CC2 and TD-DFT; see Box 1) for several excited states of 22,000 molecules 

is the QM8 dataset84, which is a subset of the popular QM9 benchmark set100. Recently, another 

dataset QM-symex with excited-state properties for ten excitations of 173,000 symmetric 

molecules was reported.101 

As a solution to the limited data availability, ML models are often developed and trained on 

much more computationally affordable bandgaps or orbital energies from which bandgaps can 

be calculated.85,95,98,102-115 Such studies are also facilitated by the availability of many big 

databases with these properties.100,116-120 One should be aware that orbital energy gaps are a 

poor approximation for excitation energies. Kohn–Sham energy gaps, for instance, correspond 

to a zero-order expansion of TD-DFT results.121 

[H2] Environmental effects 

Another challenge for ML is the proper description of environmental effects (such as solvents) 

on excitation energies and two possible strategies have been suggested to address this 

problem.34 One approach would be to completely ignore the environment in the ML model and 

only incorporate environmental effects implicitly through training on reference data that 

include such effects. This approach is equivalent to implicit solvent models in QM.34 

Alternatively, information about the environment can be included explicitly in the ML model, 

typically at the descriptor level.34,122 In a broader context, it is known from the use of ML 

approaches for the study of ground-state properties that special treatment of long-range 

interactions, such as explicit inclusion of additional dispersion corrections or training separate 

ML models on charges for capturing electrostatic effects, is often necessary.23,123 In any case, 

the generation of reference data that capture environmental effects requires additional 

computational cost. 
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[H2] Gauging errors and choosing models 

We have discussed so far some of the general challenges related to the learning of excited-state 

energies. However, some of these challenges may not have a severe impact for the problem at 

hand. For example, ML models with local descriptors can still be successfully applied to predict 

excitation energies for large oligomers93,124 or learn multiple energy levels of small 

molecules.35,44 If the researcher is interested in a single molecule, then ML models that are not 

transferable to other molecules can be used.31,32 Independent ML models can be trained for 

each excited state separately and still provide reliable results.32,37,39,41 It is also often overlooked 

that for a well-trained ML model, the major source of error typically comes from the 

inaccuracies in the training data obtained with QM methods and therefore, the further reduction 

of the learning error will not significantly improve the accuracy of the final simulation result.32  

In some cases it might be unclear which ML algorithm to adopt for a specific application, 

because various algorithms — either based on kernel methods or neural networks (Box 3) — 

have been used for similar or even the same tasks, delivering comparable results.23,43,46 It 

should be good practice to benchmark several ML methods in the same way it is routinely done 

for QM methods before applying them to a particular research problem. This strategy brings 

us to another underappreciated approach: the use of an ensemble of ML models — weak 

learners — to obtain better overall prediction — strong learner (see Box 3).92 

[H1] Spectroscopy 

Spectroscopy to probe molecular excited-state properties is essential for elucidating the 

chemical structures and electronic dynamics. ML is emerging as a useful tool for spectroscopy 

and can assist in both predicting and analyzing the electronic spectrum for a given chemical 

structure and solving the inverse problem of determining a chemical structure for a given 

spectrum. A wide range of electronic spectroscopic methods exist, which measure various 

physicochemical phenomena,9 and ML has been already applied to assist different 

spectroscopic techniques, including steady-state absorption (in both optical26,32,34,35,125,126 and 

X-ray127-129 domains), emission,28 and multidimensional time-resolved spectroscopy.34,126,130 

Some of these studies26-28 were the earliest works using ML for excited-state research, and we 

are currently experiencing a resurgence in interest in such methods. 
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[H2] Spectra from surrogate models 

In most studies so far, ML has not directly been applied to predict the spectrum itself. Instead, 

ML is typically used as a surrogate model for a QM method, to predict transition energies and 

transition probabilities. Then, the spectrum is predicted with one of the techniques discussed 

in Box 4 using the ML predictions as if they were QM predictions. One particular problem is 

that learning quantities needed for transition probabilities, such as oscillator strengths or 

transition dipole moments, seems to be more challenging than learning energies.84,124  

In the case of the single-point convolution approximation, which requires only information 

about the equilibrium geometry, ML can be used to learn oscillator strengths and excitation 

energies of electronic transitions of various molecules. This approach has been applied, with 

various degrees of success, to data sets containing only one or two lowest-lying 

excitations.84,86,98  

In the nuclear ensemble approach (NEA, Box 4), energies and transition probabilities must be 

obtained for many geometries of the same molecule, which are generated either from molecular 

dynamics or some probability distribution, such as a Wigner distribution for the nuclear normal 

modes (FIG. 4a). ML has been used for creating surrogate models for excitation energies and, 

in most cases, for oscillator strengths or transition dipole moments, which were subsequently 

used for calculating spectra of various molecular systems (FIG. 4b).30-33,35,124 These models 

were developed for different purposes and are based either on NN31,35,124 or kernel methods.32 

Our ML-NEA implementation is based on the KREG model [G] and allows to significantly 

speed up the simulations of spectra for dozens of excitations of single small molecules or 

medium-sized molecules and only requires hundreds of QM training points (FIG. 4c and d).32 

It practically does not add any computational cost compared to the calculation of the spectra 

with the traditional NEA approach using the same number QM calculations because training 

on such a small number of points takes minutes. Developing ML models for the calculation of 

NEA spectra for many excitations (often few dozens are required for a spectrum simulation) 

and chemically diverse molecules remains an open challenge. One attempt to do so was limited 

to a few excited states in several small systems.35 For larger molecules, even oligomers, in 

which excitations are well localized and could be learned with local descriptors and rather small 

cutoff distances, relatively large errors were observed for transition dipole moments, which 

could be adequately learned only with a very large cutoff approaching the length of the largest 

oligomer.124 The large ensembles of nuclear geometries enabled by ML (it can be easily used 

to predict excited-state properties for tens of thousands or millions of ensemble points) have 
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the distinct advantage of producing high-precision, statistically converged results compared to 

the relatively small QM ensembles as has been verified in steady-state absorption 

spectra.31,32,124 

ML starts to be used for high accuracy spectrum simulations (Box 4). Time-dependent 

approaches have been successfully applied to simulate linear125,126,131 and multidimensional 

spectra.34,126 These spectroscopic simulations should soon benefit from the development of ML 

methods for excited-state dynamics (discussed in section Dynamics), because such ML 

dynamics simulations allow to directly predict time-dependent signals. An application of ML 

that remains unexplored has been its use to predict Franck–Condon factors that would enable 

fast simulations of vibrationally resolved spectra within time-independent approaches. 

[H2] Direct spectrum simulation 

A fundamentally distinct approach for the simulation of spectra with ML is to directly predict 

them without using ML as a surrogate model for QM methods. Because one of the main 

strengths of ML is related to the creation of images, it can, in principle, be used directly to 

obtain spectral images for a given molecular structure. This research area awaits to be explored 

more in the coming years. It should be noted, however, that such a direct approach of simulating 

spectra with ML needs a training set of spectra in the first place. For example, this approach is 

not suited for accelerating calculations of a spectrum of a single molecule, for which non-direct 

methods, such as nuclear ensemble approach using ML as a surrogate model for QM methods, 

are more suitable.  

One step towards the direct simulation of spectra with ML was made for the simulation of two-

dimensional electronic spectra of a light-harvesting complex.130 In that study, calculated 

pigment-site energies were used as descriptors, rather than the more conventional structural 

descriptors. An approach to directly simulate spectrum for a given structure was suggested 

recently for the prediction of K-edge X-ray absorption near-edge structure spectra of diverse 

molecules from the QM9 dataset132 and solid materials.133 This approach enables assignment 

of  geometrical structures by comparing the experimental and simulated spectra, which brings 

us to the next important application of spectrum simulations: structure determination. 

[H2] Structure determination 

Spectrum simulations are an essential tool to answer which chemical structure corresponds to 

a given measured spectrum. As we have seen in this section, ML can alleviate the cost of 

spectrum simulations, accelerating structure determination. ML can help determine structures 
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in other ways too. One of them is to use ML to generate an extensive database of structures 

with associated spectra to which a given spectrum can be matched.134 Another way is to use 

supervised and unsupervised learning to determine structural parameters from a given spectrum 

directly.26-28,127-129 For example, unsupervised learning can be used to analyze how the 

spectrum depends on the structure and environment, enabling the formulation of rules for 

structure determination.68,69,135,136 Such insight may also be useful for designing new materials, 

as we discuss in the section Design of optoelectronic materials.  

[H1] Dynamics 

Dynamics simulations provide a unique insight into how excited-state properties evolve with 

time, enabling the calculation of time-dependent properties from first principles. Excited-state 

dynamics can be used to simulate spectra, estimate reaction rates, determine time constants of 

radiationless processes and monitor exciton transfer times, among many applications. 

However, the computational cost of dynamics simulations is staggering as it requires hundreds 

of thousands or even millions of QM calculations (Box 5). Furthermore, the analysis of 

dynamics simulations may also require intense manual inspection. 

ML is a very welcome addition to the computational toolbox for excited-state dynamics. As in 

the case of spectrum simulation, ML can assist in performing dynamics simulations by using 

ML as a surrogate for QM methods, or it can be used to calculate the ultimate property of 

interest directly, circumventing dynamics simulations altogether. Moreover, ML can help in 

the analysis of dynamics. 

[H2] Nonadiabatic dynamics 

ML can be used as a surrogate for QM in many conventional methods for dynamics simulations 

(we refer the reader to a recent Review45 that provides an excellent description of many ML 

models and related technical issues). Propagating QM dynamics on high-accuracy excited-state 

PESs is only possible for a relatively small number of atoms treated quantum-mechanically, 

because it requires information about excited-state energies, energy gradients, and couplings 

that are computationally costly to calculate. This information is obtained either from 

precomputed PES137 or by performing QM calculations on-the-fly during the time propagation 

(Box 5).138 ML can bring these two conventional strategies together, because in this case the 

PES is always given as an interpolating function, rather than obtained from a direct solution of 

the Schrödinger equation. 
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Because of the development of fast ML approaches for the simulation of ground-state 

dynamics,29 it may seem to be straightforward to extend these approaches to excited-state 

dynamics, particularly to one of the most popular types of dynamics: trajectory surface hopping 

(Box 5). However, besides the challenges related to learning excited-state energies, such as 

complex electronic density and multiple states (see the section Energies), one has to consider 

couplings between states and deal with the high density of excited states. A cost-efficient 

generation of the training set also becomes especially important in dynamics simulations, as 

one usually does not know a priori which regions of the configuration space are the most 

representative during the excited-state time evolution. This problem can be tackled using active 

learning, which is based on propagating many exploratory trajectories that iteratively identify 

low-confidence regions for ML.41,43-45,97 

For dynamics propagated in the adiabatic representation (Box 5), the population transfer 

between electronic states is mediated by nonadiabatic coupling vectors. Learning these 

coupling vectors is particularly difficult as they are very narrow functions of the nuclear 

coordinates (FIG. 5) that become singularities at a conical intersection [G]. Moreover, the sign 

of coupling vectors (phase) is arbitrary, a feature inhered from the wavefunctions' arbitrary 

global phase. Despite these problems, even very narrow nonadiabatic coupling vectors can be 

learned. One has to ensure that the ML training set includes nuclear configurations featuring 

large coupling magnitudes,29 which can be obtained through a careful selection of training 

points. These points can be handpicked,29 or selected by using dense sampling of all points,38 

or sampled in specific regions,139 or included through active learning.41,43-45 The coupling 

vectors tend to infinity at zero energy gaps, therefore it is also helpful to train the model on 

these vectors multiplied by the energy gap.41,43-45,140 The problem of the arbitrary phase of the 

coupling vectors can be addressed by either correcting the phase before the ML training41,140 

or using ML itself to select the phases that lead to best predictions during the training process.44 

For nonadiabatic dynamics involving intersystem crossing (transition between states of 

different spin multiplicities), one may also need to learn spin–orbit couplings.44 

The difficulties involved with the learning of nonadiabatic couplings can be avoided altogether 

by adopting nonadiabatic dynamics methods that estimate the couplings from some features of 

the PES, such as energy gaps and energy gradients (see Box 5). Such approach has been used 

for the calculation of ML dynamics with the Zhu–Nakamura37,39,141 and the Hessian44 

approximations. Alternatively, one can calculate nonadiabatic couplings in the vicinity of 

conical intersections by switching to conventional QM methods during ML dynamics. This 
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approach gives rise to mixed QM–ML dynamics, in which most of the dynamics is propagated 

on the ML PES, while in critical regions with small energy gap or regions of low-confidence 

in ML PES, propagation is switched to conventional QM dynamics.38,39,96 

Both kernel methods and NNs have been used to simulate excited-state dynamics, in the same 

way these approaches can be used to learn excited-state energies (see section Energies). They 

are mostly based on the same ML models that are applied for learning ground-state energies. 

Some of them are used to learn each state separately,37-39,41 while others are adapted to learn 

multiple states simultaneously,43,44 with both types of approaches giving good agreement with 

the QM dynamics.45 A comparison of NN and KRR methods for nonadiabatic excited-state 

dynamics did not highlight a significant difference in accuracy between the two classes of 

methods.43 This confirms typical observation for ML in QM research that similar accuracy can 

often be achieved with different ML models, although each has its advantages and 

disadvantages. For example, kernel methods are more straightforward to train owing to their 

closed analytical solution of parameters, but a larger quantity of data can be treated with NNs  

(Box 3).23 

Other types of excited-state dynamics can also benefit from ML. The emergence of full 

quantum wavepacket dynamics based on on-the-fly PES calculation142 has found a powerful 

ally in ML.125,143-151 In most of these approaches,144-151 the global PES is built iteratively in an 

active learning manner from a collection of local ML PESs obtained during the time 

propagation. 

Often, excited-state wavepacket dynamics is performed in the diabatic representation (Box 5), 

and ML algorithms have been intensely employed to aid the fitting and diabatization 

process.152-168 Several recent works have extended the latter approaches to also use ML for 

learning transition dipole moments164 and spin–orbit couplings.169  

All ML works mentioned in this section were dealing with only a small number of excited 

states. However, dynamics often must be started with a large number of closely-lying excited 

states and it may be particularly challenging for ML to describe all of them adequately. A 

hybrid QM–ML approach can potentially solve this problem by using QM at the start of 

dynamics when it quickly transitions from high to low-lying states. This would make training 

ML models much easier because only low-lying states will need to be trained accurately. 
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Another challenge in the use of ML for excited-state dynamics is related to the description of 

rare events,25 such as tunneling.170 To capture these properly, the training set should include 

enough information about conditions for these rare events, such as representative geometries. 

If such information is known beforehand, it could be used to augment the training set. 

Otherwise, one must rely on active learning approaches to learn such conditions.140 

Note that all studies surveyed above only reported test-systems results as part of proof-of-

principle demonstrations of ML dynamics. The lack of specific applications signals the most 

critical challenge in this field: despite all the progress, using ML for dynamics is much more 

cumbersome than using QM because no automatic protocols exist to perform ML dynamics 

simulations from start to finish. The biggest problem is to obtain a cost-efficient training set. 

While active learning can help,45,46 it is currently a rather slow approach itself, as it requires 

running multiple trajectories and re-training the ML model repeatedly. It is unclear what are 

the optimal settings for active learning (these include the initial training set, number of 

trajectories, how long to run trajectories and uncertainty quantification). We anticipate that 

much effort will be directed in the future to automate active learning approaches and the whole 

workflow of ML dynamics simulations. 

[H2] Dynamics of large systems 

There is a whole body of research devoted to the development of different ML models to tackle 

large molecular systems and assemblies beyond the capability of conventional QM methods. 

One of such ML approaches treats the relevant photoactive part of the system at the QM level, 

while ML is used for the surrounding environment.40,171 Another approach uses ML to learn 

excitation energies for a photoactive region calculated within the conventional QM–molecular 

mechanics (MM) (see Box 1) approximation.122 In a third approach, charge and exciton transfer 

are simulated based on MM trajectories using a ML model only to learn the parameters of the 

Frenkel Hamiltonian and fragment molecular orbital Hamiltonian.172 Beyond explicit inclusion 

of environment atoms, dynamics can be propagated using model Hamiltonians for open 

quantum systems,173 and ML has been applied to enable and accelerate the calculation of such 

dynamics.126,174-176 In a final approach, nonadiabatic events in the excited state are evaluated 

with QM methods on top of a ML ground-state dynamics (this approximation can be justified 

for very large assemblies, in which excited-state geometry deformation can be neglected).42 In 

this case, time-derivative nonadiabatic couplings are still calculated with a QM method. 

Learning these couplings remains an open challenge, although unsupervised learning has 
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shown that they may be learned just using static rather than time-dependent structural 

information.72 

[H2] Direct simulations of dynamical properties 

Ultimate properties related to excited-state dynamics can be directly predicted using ML 

approaches that bypass the calculation of actual dynamics, in a way similar to that discussed 

for spectrum simulations. For example, exciton-transfer times has been directly calculated 

using ML.177 This kind of simulations can be instrumental in searching for new materials with 

the desired range of property values, as we discuss in the next section, Design of optoelectronic 

materials. Again, as in the case of spectrum simulation, the limitation of a direct approach is 

that it requires a training set for the properties under investigation. For example, for exciton-

transfer times, many dynamics simulations had to be performed in the first place to feed enough 

data into the model. Thus, a direct approach cannot fully replace the use of ML as a surrogate 

for QM methods in dynamics simulations. Likely, in the future, surrogate and direct approaches 

will be used together so that a surrogate approach generates a cost-efficient training data set 

for the direct approach. 

[H2] Dynamics analysis 

The arduous task of analyzing dynamics results can be substantially eased by unsupervised 

learning. For example, unsupervised learning was used to identify and characterize meta-stable 

patterns in molecular conformations and transitions between them during excited-state 

dynamics.30 Dominant active coordinates from excited-state dynamics simulations can be 

determined using unsupervised learning.70 It can also assist the clustering of similar trajectories 

and structures.71 

Unsupervised learning can lead to unexpected findings. For example, it has recently uncovered 

surprising relations between nonadiabatic couplings, and static and dynamic features in a 

perovskite material consisting of organic and inorganic parts.72 This work showed that the static 

structure affects nonadiabatic time-derivative couplings more than atomic motions. In addition, 

charge recombination in the inorganic part was strongly influenced by motions of adjacent 

organic molecules that contribute to neither hole nor electron wavefunction. This knowledge 

may lead to practical design rules for improving the efficiency of perovskite solar cells, as it is 

apparent that this is influenced by geometrical changes that can be induced by chemical 

modification. Such design rules greatly assist in the design of optoelectronic materials — the 

topic our next section. 
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[H1] Design of optoelectronic materials 

Training ML models for the prediction of excited-state properties can aid the search of 

optoelectronic materials.178,179 For example, ML trained on excitation energies of fluorescent 

molecules can be used not only for emission spectrum simulation but also for the design of 

materials that emit at a required wavelength for application as LED or a fluorescent label in 

cell imaging.47-49 More often than not, the compounds that are intended to be used in complex 

photodevices are selected based on  macroscopic properties such as power conversion 

efficiency (PCE) or fluorescence quantum yield that ultimately depend on atomic-scale 

molecular excited-state properties. Calculating these properties with QM is often a formidable 

task and the beauty of ML is that it can be used for learning any of them.  

ML has been intensively used for the discovery of materials to be employed in optoelectronics, 

which are mainly organic semiconductors,74,180-184 components of bulk heterojunctions for 

organic photovoltaics (BHJ-OPV),51-54,60-62,75,76 materials for dye-sensitized solar cells 

(DSSC)55-59,63,185,186 and perovskites.95,111,112,187 ML models have also been developed for the 

design of fluorescent organic molecules (proteins and others)47-49,68,69,188,189 and photosynthetic 

complexes177 that can be used in biological, biomedical and biotechnological research. 

Direct applications of ML require that a specific ML model learns the ultimate target property 

of a material, such as the PCE of a solar cell built with it (FIG. 6). However, such learning 

typically requires a significant amount of experimental training data, the generation of which 

is very time and resource consuming, limiting the applicability of direct ML. An alternative 

approach is to learn an intermediate, but more accessible property related to the ultimate target 

property (FIG. 6). The intermediate properties are usually calculated with QM simulations and 

then used to train ML surrogate models for QM properties. Thus, supervised learning may be 

used to learn the energies of frontier orbitals and bandgaps known to be correlated to the 

PCE.190 In the following two subsections, we see how various ultimate and intermediate 

properties can be learned. The most straightforward application of such ML models is for 

HTVS of potential candidates to identify the most promising materials (FIG. 6). ML can, 

however, also be used for an automated generation of structures of new compounds with 

desired properties (FIG. 6). We will discuss this strategy in the final subsection. 
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We should remark that whatever computational method is chosen for in silico materials design, 

the best performing molecules may be difficult to synthesize. Thus, an estimate of 

synthesizability alongside performance is highly desirable.60,63,74 Furthermore, even if 

promising molecules can be prepared synthetically, their performance strongly depends on the 

photodevice setup they are used in. ML comes in handy also in this case, because it can be used 

to find the optimal device setup, process that usually requires lots of manual experimentation. 

Examples of such ML applications include the optimization of dye-sensitized solar cells with 

multiple linear regression and partial least squares regression.191-194 and the construction of 

complex optoelectronic structures using a combination of NNs for forward modeling and 

inverse design.195 ML can even be used to optimize device structure on a nanoscale, for 

example, by guiding experiments to create nanostructures of required shape196 or to suggest 

experimental setups for controlling the growth of a 2D semiconducting material.197 

[H2] Learning ultimate target properties 

The ultimate target property of an optoelectronic material obviously depends on material’s 

intended use. The property targeted by ML for applications in BHJ-OPV51-54,61,62,64 and dye-

sensitized solar cells55-60,63 is PCE. In organic field-effect transistors, the target property is 

electron mobility,184 whereas in fluorescent molecules, target properties are emission 

maximum,47-49,188 colour189 and photoluminescence quantum yield.81 The data sets also greatly 

vary in size, composition and quality of reference values (owing to the various measurement 

conditions of the experimental values). Given the different nature of ultimate target properties 

and data sets, there is no single recipe for creating ML models. Thus, for each application, lots 

of human input is necessary for the selection of an appropriate combination of ML algorithms 

and descriptors. As for descriptors, one can categorize them into structural, physicochemical 

and QM descriptors. Often, the same descriptors that are used for drug design are included in 

ML models for optoelectronic materials design. QM descriptors are usually obtained from 

computationally affordable semiempirical methods. These descriptors can be electronic 

localization energy calculated using Hückel theory,51 orbital energies,59,60 or more 

computationally expensive descriptors derived from vibrational frequencies.55 

ML algorithms reported in the literature include multiple linear regression, partial least squares 

regression, Lasso regression, NNs, kernel methods, random forest and gradient boosting 

regression (see Box 3). In the case of materials design, the ideal ML algorithm not only needs 

to deliver good prediction accuracy, but should also inform on which factors are the most 

significant to achieve the aimed goal, so that design rules for new materials can be derived. 
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There are several ways to get such interpretable models. One of them is to use supervised 

learning, which allows us to judge which descriptors are the most important, typically 

employing a random forest or Lasso regression and partial list squares. Such approaches, for 

example, gave evidence that important properties determining PCE or electron mobilities are 

orbital energies.58-61,184 Another way is to use unsupervised learning. This approach can help 

to classify materials based on their properties , for example, by establishing a relationship 

between high PCE values and structural parameters.198 Supervised and unsupervised learning 

techniques can also be combined, as was done to find a correlation between complex protein 

fluorescence spectra and protein structure.68,69 

The algorithm accuracy also matters, of course. The big challenge is to create accurate and 

transferable models to be applied to HTVS of lead molecules from databases with millions of 

candidates, especially if only a small number of experimental reference values is available (for 

example, about 50 molecules).51 Creating and curating such databases199 is a crucial challenge 

on its own as it requires feedback from ML and human experts across disciplines, as was done 

in the Harvard Clean Energy Project (CEP).73,178 In materials search, simply collecting training 

data for ML from existing literature has several drawbacks. The first of them is that ML 

predictions should be verified and refined, and this process requires new experiments. The 

second drawback is that materials performance in a device is influenced by many experimental 

conditions that vary from one study to another and can hardly be taken into account by ML. 

Even the current state-of-the-art ML models, which do not consider experimental factors, are 

challenging to use. As mentioned above, a plethora of ML models with very different 

algorithms and descriptors have been suggested in the literature. Such a lack of clear-cut 

guidelines on what method to use hampers new ML applications. Further development of 

integrated software platforms is required for at least an initial automatic assessment of a 

selection of typical ML models for learning ultimate target properties. 

[H2] Learning intermediate properties 

Ultimate target properties of optoelectronic materials are known to be correlated to many 

molecular features that can be used as intermediate properties. Therefore, ML has been used to 

learn various intermediate properties such as bandgaps,95,111,112,200-202 band edges,203 

intramolecular reorganization energies,180,182,183,204,205 delayed fluorescence rate constant,181 

decay rates of emitters,206 exciton-transfer times and transfer efficiencies,177 and electronic 

couplings.172,207-214 All these properties were calculated with QM methods, and ML was later 

used as a surrogate model for QM to accelerate screening (FIG. 6). Moreover, ML can also 
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learn experimental intermediate properties, such as the absorption wavelength of photoswitch 

molecules.215 QM methods could also be used to calculate this property (and ML would be then 

used as a surrogate model for QM), but these methods can be computationally demanding and 

can lead to less accurate data than those obtained with experimental measurments.215 

Learning intermediate properties may also provide in-depth theoretical insight into the 

photophysical processes that takes place in the material and that can be experimentally 

measured. Therefore, ML can use experimental data as input and predict important 

intermediate properties, thus directly linking experiments to the theoretical description. A 

highly inventive example of such ML application is to learn the exciton wavefunctions using 

experimental near-field spectra as input.163 Similarly, ML could take time-resolved 

photoluminescence data as input to predict decay rates of emitters, although this approach has 

only been applied on computer-generated data.206 

The more common task of predicting intermediate properties from theoretical data faces similar 

challenges of the prediction of ultimate target properties previously discussed in relation to the 

selection of the appropriate ML algorithm and descriptors. Again, no single recipe exists and, 

for example, descriptors adopted for solving specific task can range from QM properties (such 

as those based on orbital energies180 or even the whole spectrum simulated with TD-DFT216) 

to structural descriptors inspired by drug design, as well as combinations of them.180-183,216 

However, because intermediate properties are mostly QM properties, it is natural to use 

common ML approaches that were specifically designed for learning other molecular QM 

properties. For example, ML models that use 3D structural descriptors for the calculation of 

ground-state energies often serve as the basis for models for the calculation of excited-state 

energies, electronic couplings172,207,209-211,213 and absorption wavelengths (see the previous 

sections and Box 3).215 

The main advantage of learning intermediate rather than ultimate properties is that it is usually 

easier to generate additional reference data for the former, opening much more efficient and 

economical ways for materials design. One of these ways is to use unsupervised learning to 

determine the most important structural motives, enabling the design of materials with desired 

intermediate properties.204,205 Active learning used in the context of HTVS provides another 

approach to the design of new materials. Once the ML model is trained on an initial set of 

reference data, it can be used to predict intermediate properties for millions of candidates to 

identify the pool of potential leads. The QM methods can then recalculate these properties for 
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this pool of leads and refine the ML model with these additional reference data. This process 

is repeated until the final leads are obtained. This strategy resulted in the discovery of lead 

candidates that were synthesized and that exhibited high external quantum efficiencies.181 An 

alternative way of using ML models for intermediate properties is to combine them with 

automated structure generation, which we discuss in the next section. 

[H2] Automated structure generation 

The approaches discussed so far in this section use supervised learning to predict ultimate or 

intermediate properties, useful in HTVS of an existing database of potential lead candidates. 

However, the pressing issue of the rational materials design is to build a database of promising 

compounds in an optimal way (FIG. 6). The dream scenario would be ML designing new 

materials automatically with as minimum human intervention as possible.73 Several approaches 

have been suggested in this respect. One of them is based on the genetic algorithm, which 

selects molecules according to the evolutionary principle of the survival of the fittest. The fittest 

molecules can be defined as those that exhibit either the desired ultimate target or intermediate 

property. Thus, this approach can be combined with ML models created for the prediction of 

these properties, as has been done for PCE.57,185,186 

Another approach that holds great promise is an effective unsupervised learning technique 

based on generative models such as variational autoencoder that can transform molecules into 

a continuous latent space, where the points with desired properties can be found and 

transformed back to molecules (Box 2). It was demonstrated that a variational autoencoder is 

superior to a genetic algorithm for such task.74 In that study, SMILES [G] were used as input 

for an encoder and output of a decoder, while a NN-based predictor was used for the estimate 

of the HOMO and LUMO energies. Interestingly, the accuracy of the prediction of these 

electronic properties as tested on the popular QM9 benchmark set100 was comparable with that 

achievable with supervised learning methods specifically designed for such tasks.74 Analogous 

approaches were used to generate molecules with the desired range of LUMO and optical 

transition energies for the design of polymer solar cells75, and HOMO, LUMO, and PCE of 

non-fullerene acceptors in solar cells.76 

Properties such as HOMO and LUMO energies can be obtained if the wavefunction is known. 

With the emergence of machine-learned wavefunctions, it is possible to find structures with 

the desired range of these energies or HOMO–LUMO gaps, as was done in a proof-of-concept 
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study for a single molecule, in which the ground-state wavefunction was predicted on an atomic 

orbitals basis.217 

Reinforcement learning218 is another powerful approach for materials design73 that also holds 

promise for searching novel optoelectronic materials. So far, this approach was used to find 

molecules that have desired absorption77 and fluorescence78 properties by recurrent neural 

networks [G] and Monte Carlo tree [G] search, where the search was guided by giving larger 

reward to molecules with TD-DFT excited-state properties closer to the target ones. In the 

future, reinforcement learning may be combined with supervised learning to speed up the 

calculation of properties defining the reward. 

Finally, the ultimate open challenge is automating the entire workflow, from the definition of 

the optoelectronic materials with desired parameters to the production of working devices. This 

automatization can only be achieved by integrating ML with robotic laboratories, where it 

would be possible to synthesize the required compounds, build the devices, and measure their 

performance.25 This futuristic goal is not that far from reality, as such robotic laboratories have 

been already built and used for the synthesis of new compounds219 and discovery of new 

materials.220 

[H1] Conclusions and outlook 

ML entered the field of excited states relatively recently, but it is here to stay. ML is geared to 

become an integral part of excited-state simulations and the design of optoelectronic materials 

(FIG. 2). Supervised learning can either directly predict excited-state properties or improve the 

performances of QM methods, which can be subsequently used for excited-state simulations. 

Both supervised and unsupervised learning provide insights into structure–property 

relationships that lead to a better understanding of photophysical processes and rules for the 

design of new optoelectronic materials. Generative models and evolutionary algorithms can 

assist the automated rational materials design. 

Despite the fast development of ML approaches for the study of excited states (FIG. 3), the 

number of reported studies using such ML models remains relatively small compared to other 

research areas. Most of the works covered here are proof-of-concept studies proposing new 

methods rather than applying ML for practical research and development (R&D). 
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One of the key aspects of the design of a ML model is the selection of an appropriate algorithm 

and descriptors. We have discussed how a ML model that gives good results for the prediction 

of one property (for example, ground-state atomization energies) is not necessarily the best 

model for the prediction of another property (for example, excitation energy, see section 

Energies).83,108 An incredibly tricky problem to solve is the design of surrogate ML models for 

excited-state properties that are transferable to other systems, and it is currently unclear how 

transferable ML can be. One of the promising ways would be to use ML to improve QM 

methods, as it was done earlier when ML was used to accelerate semiempirical QM 

calculations, which was then applied to calculate excited-state PES.67 We expect much of the 

research to be focused in this direction.47 

Any ML model is only as good as the training data, which has several implications. One of 

them is that ML can often be used to increase the precision of simulations, for example, to 

obtain more precise absorption spectra,32 but its accuracy will be limited by the accuracy of the 

reference QM method used to generate training data. In other words, the error of ML models 

with respect to the reference QM method is less than the error of the QM method with respect 

to the true value.32,108 Another implication is that many research groups are developing special 

techniques to obtain proper training sets. For example, excited-state PES representation to be 

used in the calculation of molecular dynamics can be obtained by sampling from existing QM 

trajectories,39 using farthest-point sampling [G],34,38 and by active learning,45 but there is no 

single established technique for this. 

The quality of training data has also an implication in materials design, which might require 

some change in the way results are reported in the literature. Usually, only successful device 

design attempts are reported, introducing a bias in the available training data. For ML materials 

design, bad results are as relevant as good ones because they allow ML to filter off materials 

with undesired performance easily.59 Another problem is that experimentally measured device 

performance strongly depends on many factors, leading to very noisy training data.59 Thus, 

measuring materials performance under the same conditions is highly desired. Especially in the 

field of materials design, interpretable ML is of high importance as it will allow researchers to 

understand which are the essential design rules for new materials.59 

While continuing method development is a must, we are already at the point where ML can 

and should be used for practical R&D. This is exemplified by a couple of excited-state 

dynamics studies, in which ML uncovered the design rules of perovskite solar cells and 
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improved our understanding of plasmonic and catalytic processes in nanoclusters.42,72 Other 

examples include the successful identification of new optoelectronic materials.77,78,181,196 We 

anticipate the rapid rise of the number of studies using ML in excited-state research leading to 

practical implications. ML will be routinely used to calculate absorption and emission spectra, 

perform excited-state dynamics and design new materials. Optoelectronic materials design will 

greatly benefit from the continuing advancement of robotic laboratories. Unsupervised learning 

will become a standard tool for analyzing excited-state simulations, often carried out with 

supervised learning methods. 

ML has a bright future in the field of excited-state research. 
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Glossary 

Co-kriging 

A kriging approach extended to treat heterogeneous data of various accuracy coming from 

different sources. 

Conical intersections 
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Crossing between the adiabatic potential energy surfaces of two electronic states in a shape of 

a cone.  

Farthest-point sampling 

Sampling of points from the data set that maximizes the distance between them. 

KREG model 

Model based on kernel ridge regression that uses the Gaussian kernel function and takes as 

input the vector of inverted internuclear distances normalized with respect to distances in 

equilibrium geometry. 

Monte Carlo tree search 

Method for the selection of  search directions in the decision tree using Monte Carlo. 

Recurrent neural network (NN) 

A NN that exploits the interdependences between elements of a sequence rather than treating 

them as independent inputs or outputs. 

Simplified molecular-input line-entry system (SMILES) 

Notation system designed to encode chemical structure in a sequence of text characters. 

 

TOC Blurb 

Machine learning is starting to reshape our approaches to excited-state simulations by 
accelerating and improving or even completely bypassing traditional theoretical methods. It 
holds big promises for taking the optoelectronic materials design to a new level.  
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FIG. 1. Potential energy surfaces (PES) of molecules. Quantum mechanical (QM) 
modeling of excited-state PES faces many challenges owing to the description of the diverse 
electronic-structure characters in different regions of the surface (represented by different 
colors). The figure schematically illustrates a one-dimensional PES, but for a molecule with 
N atoms, the full PES dimensionality is 3N-6. This example shows three types of electronic-
structure characters, np* (indicated in orange), pp* (blue), and closed shell (cs, dark green). 
The main electronic configuration of each character is given in the lower panel. 

FIG. 2. Machine learning (ML) for the study of excited states. ML can be used to predict 
properties associated to the excited states of a molecule fast after learning on quantum 
mechanical (QM) or experimental data. ML models can also be used to improve QM 
methods, analyze data and discover new compounds. The final deliverables of ML are then 
spectra, electronic property surfaces (such as potential energy, transition dipole moments, 
nonadiabatic, and spin–orbit couplings surfaces), dynamics simulations or new materials. 

FIG. 3. Timeline of pioneering developments in the field of machine learning for 
excited-state research. 

FIG. 4. Machine learning (ML) spectra calculated with the nuclear ensemble approach 
(NEA). a | NEA absorption spectrum requires quantum mechanical (QM) calculations of 
transition energy DE(R) and oscillator strength f(R) for many (several hundreds to few 
thousands) nuclear geometries R. The spectrum s(DE) is given as a distribution of DE(R) 
weighted by f(R). b | Absorption spectrum can be obtained without much loss of accuracy by 
using ML trained on a relatively small number of QM data, to predict DE(R) and f(R). c | 
Example of an absorption spectrum of benzene calculated with ML trained on 250 points 
(ML–NEA, red), which is in very good agreement with the spectrum calculated from 50 
thousand time-dependent density functional theory (TD-DFT) calculations (TDDFT–NEA, 
blue). ML–NEA can also accurately reproduce low-energy absorption bands present in the 
experimental spectrum (from Ref. 221) that single-point convolution (TDDFT–SPC, Gaussian 
broadening of line spectrum, green) fails to describe.32 d | Example of ML–NEA emission 
spectrum (red) compared to reference TD-DFT emission spectrum (blue) of sinapic acid in a 
proof-of-concept study.30 

FIG. 5. Machine learning for surface-hopping excited-state dynamics. a | The calculation 
of excited-state dynamics with ML requires models for energies and gradients. Couplings 
between states are also needed. These are narrow functions, which are difficult but possible to 
learn.29,45 Thus, dynamics is sometimes run with QM couplings calculated at small energy 
gaps between states38 or using models without explicit couplings (like the Zhu–Nakamura 
approach).37,39 b | A recipe for learning narrow couplings is the inclusion of points with large 
couplings into the training set. When the maximum point (red circle) is not among the 
training points (magenta circles) fed to ML, it erroneously predicts almost zero coupling 
(blue curve). After the maximum is included in the training set, ML faithfully reproduces the 
narrow coupling (red curve).29 

FIG. 6. Strategies for optoelectronic materials design with machine learning (ML). a | 
ML can be used to learn ultimate target properties, such as power conversion efficiency 
(PCE) of a solar cell (top). Alternatively, it can be used to learn intermediate properties such 
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as HOMO–LUMO gap correlated with PCE (bottom). Intermediate properties are usually 
easier to obtain. Topologies of the materials space for both ultimate and intermediate 
properties are similar, but not identical. Thus, the search for optimal materials based on 
intermediate properties may lead to selection of a different compound, but with similar 
performance to the compound with the optimal ultimate property. b | ML methods, such as 
kernel ridge regression (KRR), neural networks (NN), can make fast predictions that facilitate 
the high-throughput virtual screening (HTVS) of materials (top). ML can also assist 
automated structure generation to design materials with desired excited-state properties 
(bottom). In case of HTVS, extensive screening of large number of materials in the existing 
database is required. In case of automated structure generation, ML may directly design 
materials with ever increasing performance. 

Boxes 

Box 1. Quantum chemical methods for excited states. 

Task zero in excited-state simulations is the electronic-structure calculation. That is, the computation 

of the potential energy and other electronic properties (such as transition dipole moment) of the excited 

states for a fixed nuclear geometry. The quantum-chemical method to execute such task can either work 

under adiabatic approximation (single reference) or be tailored to assess nonadiabatic regimes 

(multireference).19 

Two of the most common methods for electronic-structure calculations are the linear-response time-

dependent density functional theory (TD-DFT)222 and the complete active space perturbation theory to 

the second-order (CASPT2).223 Other popular single-reference methods for electronic-structure 

calculations are couple cluster to approximated second-order (CC2)224 and algebraic diagrammatic 

construction to second-order (ADC(2)).225 For chemically complex systems (such as radicals), the 

expensive but reliable multireference configuration interaction (MRCI)19 may be the best choice. The 

workhorse for the study of excitations in materials is the GW approximation.226 Many of these methods 

have parametrized versions that replace some of their most expensive routines with empirical or 

precomputed values. Such is the case of time-dependent density functional tight binding (TD-DFTB)227 

and MRCI based on the orthogonalization method 2 (OM2/MRCI).228 Realistic modeling of excited-

state phenomena may require considering the full molecular environment (solvents, surfaces, proteins). 

Such a task is usually only affordable through hybrid methods that treat the core molecule quantum 

mechanically and the remaining system with molecular mechanics (QM/MM).229  

For many applications, we must go beyond the electronic structure for a single geometry. We may need 

to know how the electronic properties change along the reaction pathway. Such investigations may 

require building the potential energy surface (PES) for each state along selected nuclear coordinates or 

using reasonable functional guesses for the potential energy dependencies.230 After the relevant sections 

of the PES are known, they can be used for estimating the probability for radiative and radiationless 

transitions between states, which enables the simulation of non-adiabatic dynamics evolution,16 reaction 
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rates231 and diverse types of spectra (Box 4).9 Many of these applications have been adapted to work 

with on-the-fly electronic structure calculations, with the advantage of dismissing PES pre-calculation 

(Box 5). 

 

Box 2. Machine learning methods for excited states. 

Depending on the task at hand, the appropriate type of ML technique can be chosen. In excited-state 

simulations, supervised and unsupervised learnings are currently the most used approaches. 

Supervised learning uses a statistical approach to find (that is, ‘to learn’) the relationship between 

features (x, often called descriptors in chemistry) and labels (y), given a labeled data set (training set).232 

The goal is then to make predictions for new features as reliable as possible. The accuracy of supervised 

learning strongly depends on many factors, such as the learning algorithm, choice of features and the 

training set's composition.29 Many of these problems in excited-state research were surveyed in a recent 

Review.46 General aspects of supervised learning applied to the study of excited states is provided in 

Box 3. 

While supervised learning can also be used to uncover dependencies in data sets, it requires labeled 

data. Often, it is desirable to analyze unlabeled data sets and, for this purpose, unsupervised learning is 

perfectly suited.232 For example, in excited-state simulations, unsupervised learning is used to classify 

similar geometries and understand key geometrical changes in photophysical processes. Unsupervised 

learning includes methods like the principal component analysis and k-mean clustering. Another 

particular class of this ML type is generative models, such as variational autoencoder, in which an 

encoder converts molecular representation into latent representation and a decoder converts the latent 

variables back to the molecular representation.233 When generative models are coupled with a predictor 

(supervised learning model), they can also estimate properties of interest. It is a powerful technique for 

materials design.74 

 [PE: Please insert here figure box 2]  

Box 3. Supervised learning for excited states. 

In excited-state research, supervised learning algorithms range from relatively simple multiple linear 

regression, Lasso regression, and partial least squares regression with few parameters, to many variants 

of more complex neural networks (NNs) and kernel methods with many parameters. Gaussian process 

regression (also called kriging), kernel ridge regression (KRR) and support vector regression are 

examples of so-called kernel methods.232 Most of the parameters of kernel methods can be calculated 

analytically, whereas NN parameters are subject to elaborate fitting procedures. Several ML models 
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(weak learners) can be combined in an ensemble to get better accuracy (strong learner), as for example 

in AdaBoost, gradient boosting regression and random forests.232 Because labeling data for supervised 

learning is resource-intensive in excited-state research, active learning234 is often applied to choose the 

points to label with the aim of minimizing their number. 

Specialized supervised learning methods were developed for creating surrogate models for the 

calculation of QM properties such as potential energies. Examples of such methods are the KREG 

[G],32,235 SchNet,236 deep potential molecular dynamics (DPMD),237 and deep potential–smooth edition 

(DeepPOT-SE)238 models. Also, special 3D structural descriptors such as the Coulomb matrix,239 bag-

of-bonds240 and smooth overlap of atomic positions (SOAP),241 which can be used as input to various 

ML algorithms,25 are popular in this research field. Specialized software, such as MLatom,242 

SchNetPack,243 DeePMD-kit,244 and DScribe245 implementing such ML models and descriptors are also 

available. 

The advantages of supervised learning compared to quantum mechanical (QM) methods are that ML 

can learn practically any property without explicitly implementing the physical model and make 

incredibly fast predictions.23,25 The disadvantages are that it is very difficult to create a ML model as 

transferable as QM methods.23 These disadvantages may be overcome in hybrid QM–ML methods 

exploiting the transferability of lower-level QM methods and accuracy and speed of ML methods. Here 

we compare different approaches to calculating QM properties on an example of predicting excited-

state energies at the level of configuration interaction (CI).

 

The pure QM approach to find the energies for each state I of a molecule with geometry R is based 

on describing the wavefunctions as a linear combination of configurations FJ (each one representing a 

possible electronic distribution) with coefficients c calculated through the diagonalization of the CI 

Hamiltonian H. This approach is very computationally costly, and its cost and accuracy are reduced by 

making approximations such as selecting only a subset of all possible configurations.  

 

An implicit QM–ML approach improves the approximated CI algorithm's accuracy by optimizing the 

configuration selection.  



This is a post-peer-review, pre-copyedit version of an article published in Nature Reviews Chemistry. The final authenticated version is 
available online at: http://dx.doi.org/10.1038/s41570-021-00278-1 
 

Page 44 of 46 

 

Whereas, an explicit QM–ML approach (D-learning)88 improves the accuracy of a lower-level 

approximated quantum mechanical approach, for example, time-dependent density functional theory 

(TDDFT), to the level of CI accuracy by learning the difference in energies ΔE between them. In case 

of a typical KRR-based ML model, the regression coefficients αk are needed to be found by training on 

a set with nuclear geometries Rk (σ is a model hyperparameter). D-learning is very robust and generic 

and does not require modifications to the QM method in contrast to the implicit approach.  

 

A pure ML approach completely bypasses the CI calculations, directly predicting properties at CI level 

after being trained on a precomputed ensemble of CI results. It usually requires much more training 

points than Δ-learning approach.88 

Box 4. Electronic spectroscopy. 

There are many different types of electronic spectroscopy, but their simulation always requires two 

essential elements: excited-state energies and transition probabilities. The transition probabilities 

require the calculation of quantities expressing state couplings and radiation–matter couplings, such as 

Franck–Condon factors, correlation functions, or transition dipole moments.246,247 

Spectra can be simulated at different levels. The lowest, most straightforward approach is based on a 

single point convolution. Within this approximation, a steady-state spectrum is approximated as the 

sum over Gaussian bands centered at each excitation energy with the areas proportional to the respective 

oscillator strengths, all computed at the ground-state minimum geometry.248 Although crude, this 

approximation delivers valuable information for the experimental assignment. 

Nuclear ensemble approach (NEA; FIG. 4),249 enables the prediction of information about the band 

envelopes using an ensemble of different nuclear geometries in the source state. In the NEA, excitation 

energies and transition probabilities are calculated for each point in the ensemble (FIG. 4a). An 

incoherent sum over these points convoluted by a line-shape function yields the spectral profile (FIG. 

4b). NEA accounts for post-Condon effects, but completely neglects vibronic effects. It can be adapted 

to predict linear and multidimensional steady-state and time-resolved spectra.250 
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High-accuracy spectrum simulations, including detailed vibronic information, can be simulated either 

by using time-independent251 or time-dependent247 approaches. Time-independent approaches, useful 

for the calculation of steady-state spectra, depend on the extensive calculation of Franck–Condon 

factors. Time-dependent approaches involve the Fourier transform of time-domain signals and can be 

used for both linear and multidimensional steady-state and time-resolved spectra. The time-dependent 

signals can be explicitly computed through dynamics simulations or evaluated for model systems.252,253 

For steady-state absorption, the time-dependent signal is the overlap between the excited wavepacket 

and the ground state wavefunction.246  

Box 5. Excited-state dynamics. 

When a molecule is promoted to an excited state, its wavefunction is, in general, not an eigenvector of 

the Hamiltonian. For this reason, the wavefunction evolves with time according to the time-dependent 

Schrödinger equation.254 This time evolution, which encompasses the transfer of the molecule between 

different states (nonadiabatic process), continues until the energy excess is dissipated either by heating 

vibrational modes, re-emitting a photon, or rearranging the bonds: the description of these processes is 

the goal of excited-state dynamics simulations. There are many different methods for this, which we 

can be split into two big classes: methods that use pre-computed potential energy surfaces (PESs) (either 

in the form of a grid or a functional model)255 and methods that compute these surfaces on-the-fly during 

the dynamics (also known as direct dynamics).17,256,257 

Dynamics simulations of excited states usually require electronic structure calculations for many 

nuclear geometries, often hundreds of thousands of them. Take, for instance, trajectory surface hopping, 

one of the most popular methods for excited-state dynamics with on-the-fly PES calculation.16 In this 

method, we run an ensemble of classical trajectories on a PES of an excited state and use a stochastic 

algorithm to allow each trajectory to change to another surface during the propagation. For propagating 

each trajectory, we compute the energy and force for each electronic state at the current geometry to 

predict the next one. We also calculate couplings between states to estimate the hopping probability to 

other surfaces. Alternatively, these probabilities can be estimated only from the PES by using the Zhu–

Nakamura258 and Belyaev–Lebedev259 approximations. Either way, a modest dynamics simulation may 

require 100 trajectories of 1 ps each, with 0.5 fs time steps, which implies that we must perform 200k 

electronic structure calculations. 

Dynamics based on precomputed PES often work on diabatic representation.254 Because quantum 

mechanical (QM) methods predict adiabatic quantities, one additional step is required: the diabatization. 

In such transformation for two states, two adiabatic PESs, for instance, S1 and S2, give rise to two 

diabatic PES, for instance, nπ* and ππ* (plus the diabatic coupling surface between them). By 

definition, the electronic character (nπ*, for instance) remains constant over the entire diabatic PES. 

For this reason, the diabatic representation eliminates discontinuities in property surfaces (transition 
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dipole moment surfaces, for example) and singularities in the PES owing to conical intersections.260 

Despite the many available methods for diabatization,260-263 this is still a challenging and costly task in 

computational chemistry. 

 

 


