Effect of a membrane on diffusion-driven Turing instability - Archive ouverte HAL
Article Dans Une Revue Acta Applicandae Mathematicae Année : 2022

Effect of a membrane on diffusion-driven Turing instability

Résumé

Biological, physical, medical, and numerical applications involving membrane problems on different scales are numerous. We propose an extension of the standard Turing theory to the case of two domains separated by a permeable membrane. To this aim, we study a reaction–diffusion system with zero-flux boundary conditions on the external boundary and Kedem-Katchalsky membrane conditions on the inner membrane. We use the same approach as in the classical Turing analysis but applied to membrane operators. The introduction of a diagonalization theory for compact and self-adjoint membrane operators is needed. Here, Turing instability is proven with the addition of new constraints, due to the presence of membrane permeability coefficients. We perform an explicit one-dimensional analysis of the eigenvalue problem, combined with numerical simulations, to validate the theoretical results. Finally, we observe the formation of discontinuous patterns in a system which combines diffusion and dissipative membrane conditions, varying both diffusion and membrane permeability coefficients. The case of a fast reaction-diffusion system is also considered.
Fichier principal
Vignette du fichier
Turing_Chapter.pdf (3.72 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03231369 , version 1 (20-05-2021)
hal-03231369 , version 2 (24-05-2021)
hal-03231369 , version 3 (14-10-2021)
hal-03231369 , version 4 (03-03-2022)

Identifiants

  • HAL Id : hal-03231369 , version 4

Citer

Giorgia Ciavolella. Effect of a membrane on diffusion-driven Turing instability. Acta Applicandae Mathematicae, 2022. ⟨hal-03231369v4⟩
146 Consultations
180 Téléchargements

Partager

More