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Introduction

Pattern formation in a system of reacting substances that possess the ability to diuse was postulated in 1952 by Alan Turing [START_REF] Turing | The chemical basis of morphogenesis[END_REF] and it was numerically studied in 1972 by Gierer and Meinhardt [START_REF] Gierer | A theory of biological pattern formation[END_REF]. A huge literature followed this path in describing animal pigmentation as for the well-studied zebrash (Watanabe and Kondo [START_REF] Watanabe | Is pigment patterning in sh skin determined by the Turing mechanism?[END_REF], Yamaguchi et al. [START_REF] Yamaguchi | Pattern regulation in the stripe of zebrash suggests an underlying dynamic and autonomous mechanism[END_REF]), the arrangement of hair and feather in Painter et al. [START_REF] Painter | Towards an integrated experimentaltheoretical approach for assessing the mechanistic basis of hair and feather morphogenesis[END_REF], the mammalian palate in Economou et al. [START_REF] Economou | Periodic stripe formation by a Turing mechanism operating at growth zones in the mammalian palate[END_REF], teeth in Cho et al. [START_REF] Cho | Interactions between Shh, Sostdc1 and Wnt signaling and a new feedback loop for spatial patterning of the teeth[END_REF], tracheal cartilage rings in Sala et al. [START_REF] Sala | FGF10 controls the patterning of the tracheal cartilage rings via Shh[END_REF] and digit pattering in Raspopovic et al. [START_REF] Raspopovic | Digit patterning is controlled by a Bmp-Sox9-Wnt Turing network modulated by morphogen gradients[END_REF]. In particular, there were found evidences asserting that internal anatomy does not play an inuential role in this phenomenon. So, spatial patterns develop autonomously without any pre-pattern structure and they are mathematically described by Turing mechanism. Reactiondiusion equations are not the only kind of system that exhibits the formation of patterns.

Receptor-based models, Klika et al. [START_REF] Klika | The inuence of receptor-mediated interactions on reaction-diusion mechanisms of cellular self-organisation[END_REF], Marciniak-Czochra et al. [START_REF] Marciniak-Czochra | Instability of Turing patterns in reactiondiusion-ODE systems[END_REF] are an example of organisation mechanisms in a system coupling reaction-diusion equations and ordinary dierential equations. These models are based on the idea that cell dierentiate according to positional information. This pre-pattern or morphogen mechanism has been experimentally proven in many morphogenetic events in early development, whereas it is not applicable to the complex structure of the adult body, Kondo et al. [START_REF] Kondo | How animals get their skin patterns: sh pigment pattern as a live Turing wave[END_REF].

Here, we consider another kind of situation which is always a reaction-diusion system but with a membrane as introduced by Kedem-Katchalsky. In the last twenty years, biological applications of membrane problems have increased. Furthermore, they can describe phenomena on several dierent scales: from the nucleus membrane, penetrated by molecules such as proteins in the transport between cytoplasm and nucleus (Cangiani and Natalini [START_REF] Cangiani | A spatial model of cellular molecular including active transport along microtubules[END_REF], Dimitrio [START_REF] Dimitrio | Modelling nucleocytoplasmic transport with application to the intracellular dynamics of the tumor suppressor protein p53[END_REF], Serani [START_REF] Serani | Mathematical models for intracellular transport phenomena[END_REF]), to thin interfaces, called basal membranes, degraded by cancer cells with the help of enzymes (Chaplain et al. [START_REF] Chaplain | Derivation and application of eective interface conditions for continuum mechanical models of cell invasion through thin membranes[END_REF], Ciavolella et al. [START_REF] Ciavolella | Eective interface conditions for a model of tumour invasion through a membrane[END_REF], Gallinato et al. [START_REF] Gallinato | Tumor growth model of ductal carcinoma: from in situ phase to stroma invasion[END_REF], Giverso et al. [START_REF] Giverso | Eective interface conditions for continuum mechanical models describing the invasion of multiple cell populations through thin membranes[END_REF]), and to exchanges in bloody vessels of blood solutes, such as oxygen, numerically studied in Quarteroni et al. [START_REF] Quarteroni | Mathematical and numerical modeling of solute dynamics in blood ow and arterial walls[END_REF]. Also semi-discretization of mass diusion problems requires numerical treatment in adjoint domains coupled at the interface (see Calabrò [START_REF] Calabrò | Numerical treatment of elliptic problems nonlinearly coupled through the interface[END_REF]).

In Ciavolella and Perthame [START_REF] Ciavolella | Existence of a global weak solution for a reactiondiusion problem with membrane conditions[END_REF], the reader can nd a previous analytical study on a reactiondiusion system of m ≥ 2 species with membrane conditions of the Kedem-Katchalsky type. The main result concerns the existence of a global weak solution in the case of low regularity initial data and at most quadratic non-linearities in an L 1 -setting. Moreover, it is proven a regularity result such that we have space and time L 2 solutions. In particular, solutions are L β in time and W 1,β in space with β ∈ [1, 2), except on the membrane Γ where we loose the derivatives regularity. So, now the question that arises is whether it is possible to observe patterns in the case species react and diuse in a domain with an inner membrane and under which conditions.

For our purpose, we consider the domain Ω = Ω l ∪ Ω r with internal interface Γ and boundary ∂Ω = Γ l ∪ Γ r , where Γ l := ∂Ω l \ Γ, Γ r := ∂Ω r \ Γ. We denote as n l (respectively, n r ) the outward normal to Ω l (respectively, Ω r ). We call n := n l = -n r . On the two domains Q l T := (0, T ) × Ω l and Q r T := (0, T ) × Ω r , we consider a reaction-diusion membrane problem for two species u and v as below.

                     ∂ t u l -D ul ∆u l = f (u l , v l ), in Q l T , ∂ t v l -D vl ∆v l = g(u l , v l ), ∇u l • n = 0 = ∇v l • n, in Σ l T , D ul ∇u l • n = k u (u r -u l ), in Σ T,Γ , D vl ∇v l • n = k v (v r -v l ),                      ∂ t u r -D ur ∆u r = f (u r , v r ), in Q r T , ∂ t v r -D vr ∆v r = g(u r , v r ), ∇u r • n = 0 = ∇v r • n, in Σ r T , D ur ∇u r • n = k u (u r -u l ), in Σ T,Γ , D vr ∇v r • n = k v (v r -v l ). (1) 
with Σ l T := (0, T ) × Γ l , Σ r T := (0, T ) × Γ r and Σ T,Γ := (0, T ) × Γ.

In this chapter, we are interested in the eect of the membrane, represented by the permeability coecients k u , k v , for Turing instability to arise under particular conditions on the latter membrane coecients and on the diusion ones. With this aim, we extend Turing's theory to the case of membrane operators. We recall the denition of a Turing unstable steady state in the case of a linearised system, Murray [START_REF] Murray | Mathematical biology II: spatial models and biomedical applications[END_REF]. Denition 1.1. We say that a steady state is Turing unstable for the linearised system if it is stable in the absence of diusion and unstable introducing diusion. It is also called diusion driven instability.

This is the kind of instability induces spatially structured patterns

As for the standard reaction-diusion problems, in order to prove Turing instability, we need to introduce a diagonalization theory for compact and self-adjoint membrane operators (see Appendix A). We introduce the eigenvalue problem of the Laplace operator with Neumann and membrane conditions for each specie u and v. We call

L = -D u ∆ and L = -D v ∆, (2) 
where we dene

D φ = D φl , in Ω l , D φr , in Ω r . φ = φ l , in Ω l , φ r , in Ω r , (3) 
for φ = u or v. So, we have for u

     Lw = λw, in Ω l ∪ Ω r , ∇w • n = 0, in Γ l ∪ Γ r , D ul ∇w l • n = D ur ∇w r • n = k u (w r -w l ), in Γ, (4) 
and for v,

     Lz = ηz, in Ω l ∪ Ω r , ∇z • n = 0, in Γ l ∪ Γ r , D vl ∇z l • n = D vr ∇z r • n = k v (z r -z l ), in Γ. (5) 
Thanks to the diagonalization theory introduced in Theorem A.1, we infer the following result.

Proposition 1.1. There exist increasing and diverging sequences of real numbers {λ n } n∈N and {η n } n∈N which are the eigenvalues of L and L, respectively. We call {w n } n∈N and

{z n } n∈N in L 2 (Ω l ) × L 2 (Ω r
), the corresponding orthonormal basis of eigenfunctions. In particular, we have that λ 0 = 0, w 0 = 1/|Ω| 

= 0, z 0 = 1/|Ω| 1 2 .
Finally, we are able to state our main theorem (for more details see Theorem 2.1).

Theorem 1.1. Assume the coecients of System [START_REF] Almeida | Energy and implicit discretization of the Fokker-Planck and Keller-Segel type equations[END_REF] are such that w n = z n , for all n ∈ N. Consider the linearised system around the steady state (ū, v) with D v > 0 xed and assume appropriate conditions on the linearised reaction terms. Then, for D u suciently small, the steady state (ū, v) is linearly unstable. Moreover, only a nite number of eigenvalues are unstable.

The chapter is organised in four sections and two appendices. In Section 2, we introduce assumptions allowing us to nd conditions in order to have Turing instability in the case of a membrane problem. We refer to Theorem 2.1 as main result. In Section 3, we restrict the analysis to the one dimensional case, so that we explicit the eigenfunctions and the equations dening the eigenvalues. In Section 4, Turing analysis is completed by some numerical examples performed with a nite dierence implicit scheme in Matlab. We investigate in one dimension the eect of the membrane on Turing patterns. In Subsection 4.1, we propose our choice of reaction terms and data setting for the numerical examples. In Subsection 4.2 and 4.3, we illustrate some simulations varying respectively the diusion and the permeability coecients. In Subsection 4.4, thanks to the choice made for the reaction terms, we analyse oscillatory limiting solutions to a fast reaction-diusion system. In Section 5, a brief conclusion can be found. At the end of the work, the reader can nd two appendices. In Appendix A, we introduce the diagonalization theorem for compact, self-adjoint membrane operators and we apply it to the operators L -1 and L -1 . In Appendix B, we give more details concerning the numerical method behind the simulations presented in Section 4 and we provide also the Matlab code.

Conditions for Turing instability

In order to study Turing instability, we rst assume that there exists a homogeneous steady state (u, v) which is a non-negative solution of

f (u, v) = 0, g(u, v) = 0.
Then, we analyse its stability for the linearised dynamical system around this steady state. Later, we come back to the linearisation of Equations (1), i.e.,

                 ∂ t u l -D ul ∆u l = f u u l + f v v l , ∂ t v l -D vl ∆v l = g u u l + g v v l , ∇u l • n = 0 = ∇v l • n, D ul ∇u l • n = k u (u r -u l ), D vl ∇v l • n = k v (v r -v l ),                  ∂ t u r -D ur ∆u r = f u u r + f v v r , ∂ t v r -D vr ∆v r = g u u r + g v v r , ∇u r • n = 0 = ∇v r • n, D ur ∇u r • n = k u (u r -u l ), D vr ∇v r • n = k v (v r -v l ), (6) 
in which f u , f v , g u , g v are the partial derivatives of the reaction terms evaluated in (u, v), and we look for conditions such that the previous steady state is unstable. We follow the standard theory in Murray [START_REF] Murray | Mathematical biology II: spatial models and biomedical applications[END_REF], Perthame [START_REF] Perthame | Parabolic equations in biology[END_REF].

Conditions for the dynamical system to perform a stable steady state With no spatial variation (eliminating the diusion term), we can study the stability of the previous steady state applying a linearisation method around (u, v), as in [START_REF] Cho | Interactions between Shh, Sostdc1 and Wnt signaling and a new feedback loop for spatial patterning of the teeth[END_REF]. Setting

z = u -u v -v ,
we get

∂ t z = Az, where A = f u f v g u g v .
We look for solutions in the exponential form z ∝ e µt , where µ is the eigenvalue related to the matrix A. The steady state z = 0 is linearly stable if Re(µ) < 0. In that case we can observe an exponential decay to zero. This condition is guaranteed if

tr(A) = f u + g v < 0 and det(A) = f u g v -f v g u > 0. (7) 
In particular, we assume f u > 0 and g v < 0,

i.e., u is called activator and v is the inhibitor.

Conditions to obtain an unstable steady state in the case of spatial variation Now we consider the complete reaction-diusion systems linearised around the steady state as in [START_REF] Cho | Interactions between Shh, Sostdc1 and Wnt signaling and a new feedback loop for spatial patterning of the teeth[END_REF]. Referring to the diagonalization theory in Appendix A, there exist orthonormal basis of eigenfunctions {w n } n∈N for L and {z n } n∈N for L in L 2 (Ω l ) × L 2 (Ω r ). We use these basis to decompose u and v as

u(t, x) = e µt n∈N α n w n (x), v(t, x) = e µt n∈N β n z n (x), (9) 
where e µt α n = (u, w n ) L 2 and e µt β n = (v, z n ) L 2 , for all n ∈ N, with L 2 which is dened as the L 2 product space.

Denition 2.1. We dene

L 2 = L 2 (Ω l ) × L 2 (Ω r ).
We endow it with the norm

w L 2 = w 1 2 L 2 (Ω l ) + w 2 2 L 2 (Ωr) 1 2 .
We let (•, •) L 2 be the inner product in L 2 .

Substituting [START_REF] Ciavolella | Eective interface conditions for a model of tumour invasion through a membrane[END_REF] into the linearised reaction-diusion System (6) and using ( 4) and ( 5), we infer

n (α n µw n + α n λ n w n ) = n f u α n w n + f v β n z n , n (β n µz n + β n η n z n ) = n (g u α n w n + g v β n z n ) , (10) 
with boundary conditions well satised. Indeed, for x ∈ Γ we deduce that

n∈N ( α n e µt k u (w rn (x) -w ln (x)) ) = n∈N k u ( α n e µt w rn (x) -α n e µt w ln (x)) ), n∈N ( β n e µt k v (z rn (x) -z ln (x)) ) = n∈N k v ( β n e µt z rn (x) -β n e µt z ln (x)) ), (11) 
whereas on the external boundary Neumann conditions are trivial. In view of the structure of ( 10), it will be convenient, for analysis, to impose w n = z n , for all n ∈ N. This is the case under the following conditions.

Lemma 2.1 (Conditions for w n = z n , for all n ∈ N). Let

ν D := D ur D ul = D vr D vl , ν K := k u D ul = k v D vl and θ := D ul D vl = D ur D vr . (12) 
A sucient condition to have w n = z n , for all n ∈ N, is the following relation

λ n = θη n , for all n ∈ N. (13) 
Proof. With relations [START_REF] Evans | Partial dierential equations[END_REF], w n and z n solve the same eigenvalue problem (see Problems (4) and ( 5)) for all n ∈ N. From the diagonalization theory (see Theorem A.1), there exists a solutions sequence of eigenvalues and related eigenfunctions. In particular, with condition (13), w n ∝ z n , i.e. w n = Cz n , for all n ∈ N but since these basis are orthonormal, the constant C is equal to 1.

We are now ready to state our main theorem.

Theorem 2.1 (Turing instability theorem). Consider the linearised Systems [START_REF] Cho | Interactions between Shh, Sostdc1 and Wnt signaling and a new feedback loop for spatial patterning of the teeth[END_REF] around the steady state (u,v) with D v > 0 xed. We assume ( 7)- [START_REF] Ciavolella | Existence of a global weak solution for a reactiondiusion problem with membrane conditions[END_REF], and ( 12)- [START_REF] Gallinato | Tumor growth model of ductal carcinoma: from in situ phase to stroma invasion[END_REF]. Then, for θ suciently small (that means D u ), the steady state (u, v) is linearly unstable. Moreover, only a nite number of eigenvalues are unstable. Proof. Using the orthogonality of the eigenfunctions in Equation ( 10) and assuming conditions ( 12) and ( 13) in Lemma 2.1, we arrive to

α n µ + α n λ n = f u α n + f v β n , β n µ + β n η n = g u α n + g v β n . (14) 
This linear system has α n and β n as unknowns. In order to have nonnegative solutions we need to assure that the determinant of the coecients of the system is zero, i.e.

det µ + λ n -f u -f v -g u µ + η n -g v = 0.
Hence, we infer that we have the so-called dispersion relation

µ 2 + µ[η n -g v + λ n -f u ] + η n λ n -λ n g v + f u η n + det(A) = 0. (15) 
As underlined in [START_REF] Gallinato | Tumor growth model of ductal carcinoma: from in situ phase to stroma invasion[END_REF], the eigenvalues are proportional. Therefore, through condition [START_REF] Evans | Partial dierential equations[END_REF], we can write that λ n = θ η n . As a consequence, we can rewrite [START_REF] Giverso | Eective interface conditions for continuum mechanical models describing the invasion of multiple cell populations through thin membranes[END_REF] to have an equation of µ(η n ). Indeed, we get that

µ 2 + µ[η n (1 + θ) -tr(A)] + θη 2 n -η n (f u + θ g v ) + det(A) = 0. ( 16 
)
For the steady state to be unstable to spatial disturbances, we require that Re(µ(η n )) > 0.

Since we are working with condition [START_REF] Ciavolella | Eect of a membrane on diusion-driven turing instability[END_REF], the rst order coecient of this polynomial is positive. Consequently, we need to impose that

p(η n ) := θη 2 n -η n (f u + θ g v ) + det(A) < 0. ( 17 
)
Because η n , θ and det(A) are positive quantities, the polynomial in [START_REF] Kondo | How animals get their skin patterns: sh pigment pattern as a live Turing wave[END_REF] can take negative values only for

f u + θg v > 0 (18) 
suciently large and θ det(A) suciently small. We remember that one of the conditions to have stability without diusion was tr(A) = f u + g v < 0. This implies that θ = 1, in other words

D u = D v .
Inequality ( 18) is necessary but not sucient for Re(µ(η n )) > 0. For the convex function p(η n ) to be strictly negative for some nonzero η n , the minimum must be strictly negative. So if we look for the minimum, we nd its coordinates

η min = f u + θg v 2θ and p min = det(A) - (f u + θg v ) 2 4θ . (19) 
Then, the condition p min < 0 corresponds to

(f u +θg v ) 2 4θ
> det(A). Finally, given specic functions f and g, we can nd the values of θ which assure that the minimum p min < 0. We call θ c the critical diusion ratio such that p min = 0, i.e. the appropriate root of

g 2 v θ 2 c + 2 (f u g v -2 det(A)) θ c + f 2 u = 0. ( 20 
)
It corresponds to the value of θ at which there is a bifurcation phenomenon (see Subsection 4.2 in which we analyse some related examples).

The range of values of

η n such that p(η n ) < 0 is η -< η n < η + , with η-= |f u + θg v | -|f u + θg v | 2 -4θ det(A) 2θ , η+ = |f u + θg v | + |f u + θg v | 2 -4θ det(A) 2θ . (21) 
If we consider the solutions given by ( 9), the dominant contribution as t increases are the modes for which Re(µ(η n )) > 0 since all the other modes tend to zero exponentially. By consequence, we can consider the following approximation for large t

u(t, x) ∼ n∈N η -<η n <η + α n e µ(η n )t z n (x) and v(t, x) ∼ n∈N η -<η n <η + β n e µ(η n )t z n (x).
So, the larger is the range dened by η -and η + , the larger is the number of unstable modes not decreasing in time and, then, the modes which infer Turing instability. In order to estimate this interval, we can restrict to the regime θ small which is the most common in data. In that way, Taylor expansion of the square root gives

η ± = f u + θg v 2θ 1 ± 1 - 4 det(A)θ (f u + θg v ) 2 ∼ f u 2θ 1 ± 1 - 2 det(A)θ (f u + θg v ) 2 .
Finally, we obtain

η -∼ det(A) f u = O(1) and η + ∼ f u θ 1.
Taking θ suciently small (that means D u ), the interval (η -, η + ) becomes very large, therefore we can nd some eigenvalues η n in this interval. We remember that η n are increasing eigenvalues converging to innity and so there is only a nite number of them in that interval. This concludes the proof of the theorem.

One dimensional case

In the one dimensional case, we can construct an explicit solution of the eigenvalue problem. We consider the domain (0, x m ) ∪ (x m , L), with x m = L/2. Given relations ( 12)-( 13) and with our short notation (3) for D v , the eigenfunctions are determined by

     -∂ 2 x z n = η n Dv z n , ∂ x z ln (0) = 0 = ∂ x z rn (L), ∂ x z ln (x m ) = ν D ∂ x z rn (x m ) = ν K (z rn (x m ) -z ln (x m )). (22) 
We decompose z n , for all n ∈ N, as a combination of sinus and cosinus. Nevertheless, Neumann boundary conditions impose a cosinusoidal form. Hence, since eigenfunctions are dened up to a multiplicative constant, we deduce that z n , for all n ∈ N, has components

z ln (x) = C 1 cos(a n x) and z rn (x) = cos(b n (x -L)).
In order to verify Equations ( 22), we get, for all n ∈ N,

a 2 n = η n D vl and b 2 n = η n D vr , so, in particular, a 2 n = ν D b 2 n , with ν D = D ur D ul = D vr D vl .
Since the eigenfunctions satisfy Kedem-Katchalsky membrane conditions, we also have the following conditions on x m = L/2, for all n ∈ N,

           -C 1 b n sin b n √ ν D L 2 = √ ν D b n sin b n L 2 , D vr b n sin b n L 2 = k v cos b n L 2 -C 1 cos b n √ ν D L 2 ,
Then, we infer that, for all n ∈ N, either b n = 0, so η n = 0 and

z ln = z rn = const, or if b n = 0,              C 1 = - √ ν D sin b n L 2 sin b n √ ν D L 2 , D vr b n tan b n L 2 = k v 1 + √ ν D tan b n L 2 tan b n √ ν D L 2
.

Hence, we have a system of two equations with 2 unknowns: C 1 and η n . We conclude that, for all n ∈ N,

                     C 1 = - √ ν D sin √ η n √ Dvr L 2 sin √ η n √ D vl L 2 , √ η n D vr tan √ η n √ D vr L 2 = k v   1 + √ ν D tan √ η n √ Dvr L 2 tan √ η n √ D vl L 2   . ( 25a 
) (25b)
We can express the eigenvalues as the positive roots of the continuous function r : R + → R, such that

r : ξ -→ ξ tan √ ξ √ D vl L 2 tan √ ξ √ Dvr L 2 tan √ ξ √ D vl L 2 + √ ν D tan √ ξ √ Dvr L 2 - k v √ D vr . ( 26 
)
see Figure [START_REF] Almeida | Energy and implicit discretization of the Fokker-Planck and Keller-Segel type equations[END_REF]. In order to simplify Equation (25b), in the following, we restrict to the case ν D = 1, i.e.

D vl = D vr and D ul = D ur , which is a reasonable assumption when the medium in the left and right domain have similar properties of diusivity. Then, relation (25b) can be written for all n ∈ N as

C 1 = -1 and √ η n tan √ η n √ D vr L 2 = 2 k v √ D vr . ( 27 
)
The simplied function r(•) of the form

r(ξ) = ξ tan √ ξ √ D vr L 2 -2 k v √ D vr , (28) 
is depicted in Figure 2. . That is relation [START_REF] Sala | FGF10 controls the patterning of the tracheal cartilage rings via Shh[END_REF], in place of [START_REF] Quarteroni | Numerical mathematics[END_REF].

Numerical examples

We investigate through numerical examples the eect of the membrane on appearance and shape of Turing's instability. We use the nite dierence scheme of a Θ-method with Θ = 1, Morton and Mayers [START_REF] Morton | Numerical solution of partial dierential equations: an introduction[END_REF], Quarteroni et al. [START_REF] Quarteroni | Numerical mathematics[END_REF], with a rst-order discretization of the boundary and membrane conditions (see Appendix B). At rst, we present in details the expression of the reaction terms and the general data setting that we are using (Subsection 4.1). Then, we show some examples. In Subsection 4.2, we perform numerical examples with dierent choices for the value of θ (see Equation ( 12)), referring to the analyses performed in Section 2 concerning the values of θ c (see Equation ( 20)). In Subsection 4.3, we exhibit simulations for dierent values of the membrane permeability coecients. Finally, in Subsection 4.4, we perform oscillatory behaviours when a fast reaction-diusion system converges to ill-posed cross-diusion equations and we observe the evolution of these instabilities under the eect of the membrane permeability parameter.

Choice of reaction terms and data setting

We choose a simple setting with mass conservation, already analysed by Moussa et al. [START_REF] Moussa | Backward parabolicity, cross-diusion and Turing instability[END_REF] in a Turing instabilities study. In the following, we consider System (1) with

f (u, v) = ε -1 (v -h(u)), g(u, v) = -f (u, v), with h(u) = α u (u -1) 2 (29) 
and (see also Figure 3) we notice the conditions

h ∈ C 2 (R + , R + ), h(0) = 0, h(u) > 0 for u > 0 and h (u) = α(1 -u)(1 -3u) > -1. (30) 
We observe that there is mass conservation which is the rst basic property of System (1) with [START_REF] Serani | Mathematical models for intracellular transport phenomena[END_REF].

Looking at the latter condition h (u) > -1, the admissible values of α are 0 < α < 3. In the numerical examples, we choose the value α = 1. The small parameter ε > 0 measures the time scale of the reaction compared to diusion. The smaller is ε, the more numerous are the patterns. Indeed, for ε < 1, we are dealing with a fast reaction-diusion system and, in the limit ε → 0, its Turing instability turns out to be equivalent to the instability due to the ill-posedness for the limiting cross-diusion equations, caused by backward parabolicity, Moussa et al. [START_REF] Moussa | Backward parabolicity, cross-diusion and Turing instability[END_REF], Perthame

and Skrzeczkowski [START_REF] Perthame | Fast reaction limit with nonmonotone reaction function[END_REF]. In the following numerical examples, we take ε = 1 which corresponds to a standard reaction-diusion system, whereas in Subsection 4.4 we let vary ε to obtain the numerical zero-limit. We briey prove that the reaction terms in [START_REF] Serani | Mathematical models for intracellular transport phenomena[END_REF], with general values of ε, α and h, satisfy the analysis in Section 2.

Claim 4.1. Considering reaction terms in [START_REF] Serani | Mathematical models for intracellular transport phenomena[END_REF], we claim that:

1. In the absence of diusion, there is a unique stable equilibrium point (u, v) to which solutions converge monotonically.

2. The same steady state (u, v) is asymptotically Turing unstable for the linearised reactiondiusion system under the condition

θ+h (u) < 0. (31) 
Proof. Statement 1.

We take the dynamical system

d dt u v = ε -1 (v -h(u)) -ε -1 (v -h(u)) ,
which has steady state (u, v) such that v = h(u). Thanks to mass conservation of the system, we can write

M := u(t) + v(t) = u(0) + v(0) and d dt u = ε -1 (M -u -h(u)) =: ε -1 G(u(t)
). Since u, v are positive functions, the function G has the following properties: G(0) = M > 0, G (u) < 0 and G(+∞) = -∞. Consequently, there exists a unique stable equilibrium point (u, v), monotonically achieved (since G(u) > 0 for u ≤ u and G(u) < 0 for u ≥ u), that cancels G such that u = M -v and v = h(u).

Statement 2.

Applying the same general steps as in the proof of Theorem 2.1, for the steady state to be unstable under spatial disturbances we require (see [START_REF] Marciniak-Czochra | Instability of Turing patterns in reactiondiusion-ODE systems[END_REF]) that θ +h (u) < 0, with -ε -1 (θ +h (u)) suciently large and θ suciently small. This is a necessary and sucient condition when it is assured that the minimum of the polynomial p(η) in ( 17) is negative. Looking back at Equations [START_REF] Morton | Numerical solution of partial dierential equations: an introduction[END_REF] with reactions in (29), we get

η min = ε -1 |h (u) + θ| 2θ and p min = -θη 2 min . (32) 
It is clear that p min < 0 for all η min = 0, i.e. for θ = -h (u). Otherwise, p min is equal to zero and, then, we have found the critical diusion ratio θ c = -h (u) at which there is a bifurcation phenomenon. Moreover, calculating the range where we can nd unstable modes, like in [START_REF] Murray | Mathematical biology II: spatial models and biomedical applications[END_REF], we deduce that η -= 0 and η

+ = -ε -1 1 + θ -1 h (u) . ( 33 
)
This range is larger if condition [START_REF] Turing | The chemical basis of morphogenesis[END_REF] with -ε -1 (θ + h (u)) suciently large and θ suciently small are satised. In particular, varying the parameter ε, we observe that the smaller it is, the larger is the range (η -, η + ), i.e. a larger number of eigenvalues generating instability can be found. This concludes the proof of the claim.

We can easily calculate the steady state (u, v) thanks to the mass conservative structure of the system, as pointed out in the previous proof. Indeed, adding up the reaction-diusion equations for u and v and integrating over the space, we get for all t ≥ 0,

L 0 u(x, t) + v(x, t)dx = L 0 u 0 (x) + v 0 (x)dx.
Then, we conclude that the steady state depends on the length of the domain ( here [0, L] ) and on the initial data, i.e.

u + v = 1 L L 0 u 0 (x) + v 0 (x)dx, with v = h(u). ( 34 
)
In particular, this steady state is Turing unstable when h (u) < -θ, as it can be deduced from relation [START_REF] Turing | The chemical basis of morphogenesis[END_REF]. So, h (u) < 0 which means that h (u) ∈ -α 3 , 0 . Then, we infer that the Turing unstable steady state is such that u ∈ 1 3 , 1 and v ∈ 0, α 4 27 (see Figure 3). Finally, we present the main data chosen for simulations in Subsection 4.2 -4.4. We show the time convergent solutions (in the left for u and in the right for v) in the spatial interval [0, L], with L = 1 and with a discretization step ∆x = L 200 . As shown in Figure 4, we take the initial data as Looking back at (34), we deduce that the steady state (u, v) is such that u+v = 4 5 with v = h(u). With α = 1, we conclude that

u 0 (x) = 7 15 + 1 5 sin(4πx), for 0 ≤ x ≤ 1 2 , 1 5 + 1 5 sin(4πx), for 1 2 < x ≤ 1 and v 0 (x) = 1 3 -1 5 sin(4πx), for 0 ≤ x ≤ 1 2 , 3 5 -1 5 sin(4πx), for 1 2 < x ≤ 1.
u = 0.7545 ∈ 1 3 , 1 , v = h(u) = 0.0454 ∈ 0, 4 27 and h (u) = -0, 3101 ∈ - 1 3 , 0 . ( 35 
)
If not specied, we guarantee conditions ( 12) and ( 13) in Lemma 2.1 with ν D = 1 such that

D ul = D ur = θ, k u = θ k v with D vl = D vr = 1 and ε = 1. (36) 

Eect of the diusion ratio

We illustrate the eect of dierent values of the diusion ratio θ in [START_REF] Evans | Partial dierential equations[END_REF]. We consider the reaction terms in [START_REF] Serani | Mathematical models for intracellular transport phenomena[END_REF], initial data as in Figure 4 and data setting as in (36) with k v = 1 xed.

We remember that when we vary θ, there exists a critical diusion ratio θ c for Turing's instability.

As analysed in the proof of Claim 4.1 and in [START_REF] Watanabe | Is pigment patterning in sh skin determined by the Turing mechanism?[END_REF], we can dene

θ c = -h (u) and η min = 1 2θ ε |θ + h (u)|, p min = -θ η 2 min , (37) 
where θ c is the critical diusion ratio at which p min , the minimum of the polynomial (17) calculated in η min , is zero. For θ = θ c , we remark that η min = p min = 0. Otherwise, for θ < θ c , the minimum is strictly negative (see Figure 5) and so we can calculate the non-empty range of instability. However, in the case θ > θ c , i.e. θ > |h (u)|, we cannot nd Turing patterns, since condition (31) does not hold.

Figure 5: Representation of the function in [START_REF] Kondo | How animals get their skin patterns: sh pigment pattern as a live Turing wave[END_REF] determining the unstable modes with the reaction terms in [START_REF] Serani | Mathematical models for intracellular transport phenomena[END_REF] for θ = θ c (dashed line) and for θ < θ c (solid line). So, p(η) = θη 2 + ε -1 (θ + h (u))η with ε -1 = 2, h (u) = -0.3101 and θ = 10 -1 < θ c .

In the numerical examples, we consider decreasing values of θ ≤ θ c in order to see both what happens in an appropriate neighbourhood of θ c and far away from this threshold. Looking back at (35), we infer that θ c = -h (u) = 3.101 • 10 -1 . We recall the expression for η -, η + in [START_REF] Yamaguchi | Pattern regulation in the stripe of zebrash suggests an underlying dynamic and autonomous mechanism[END_REF] and the one dimension Equation ( 27) that denes the eigenvalues of u and v:

η -= 0, η + = -ε -1 (1 + θ -1 h (u)) and √ η n tan √ η n √ D vr L 2 = 2 k v √ D vr .
Case 1. We take θ = θ c = 3.101 • 10 -1 and the other parameters according to (36

) (k v = 1, k u = 3.101 • 10 -1 ).
Figure 6: Taking θ = θ c , as we can see in Figure 5, we cannot dene an unstable range (η -, η + ) such that the polynomial p(η) is strictly negative. In fact, we are at the bifurcation point. That is why, on a long time scale, we do not observe patterns neither for u (in the left) nor for v (in the right). Instead, as we are working with a reaction-diusion equation with dissipative membrane conditions, we notice the convergence to the equilibrium (u, v) in (35).

Case 2. We take θ = 7.8•10 -2 and the other parameters according to (36

) (k v = 1, k u = 7.8• 10 -2 ).
In this case, η + = 2.97 and so only the rst eigenvalue η 1 = 2.96 corresponds to an unstable mode (η n > η + , for n ≥ 2).

Figure 7: Since θ < θ c , on a long time scale, solutions do not reach the steady state even if they are nearby. Considering the only η 1 ∈ (η -, η + ), we do not observe a really interesting pattern but a piecewise function. We can appreciate the inclination of the solutions in the left and right limit at the membrane: they satisfy Kedem-Katchalsky conditions. We remark that with membrane problems, a nearly constant function with a jump at the membrane stands for a pattern.

Case 3. We consider θ = 3•10 -4 and the other parameters according to (36

) (k v = 1, k u = 3• 10 -4 ).
These data give η + = 1032.6 and so we have 6 eigenvalues in (η -, η + ). , we succeed in having more considerable patterns for both the species u and v in the temporal limit. Moreover, it is again clear the well-verication of membrane conditions. As remark, we underline that until 5 eigenvalues in (η -, η + ), over long time interval, the shape does not change signicantly respect to Figure 7. Then, the diusion ratio θ has to be suciently small to appreciate more complex patterns.

Case 4. We take θ = 10 -5 and the other parameters according to (36) (k v = 1, k u = 10 -5 ). In this case, η + = 31009 and so we have several eigenvalues in (η -, η + ).

Figure 9: Here, θ is on a very dierent scale respect to θ c and there is a big number of unstable modes η n . Hence, we observe remarkable and beautiful patterns both for u and v. The jump at the membrane is not evident with this choice of parameter. Then, in the zoom circles, we can appreciate the inclination of the solutions in the left and right limit at the membrane remarking that they satisfy Kedem-Katchalsky conditions.

In conclusion, xing k v ∈ (0, +∞) and decreasing θ from its critical value θ c , we can notice a remarkable change in patterns. In particular, starting from the convergence to the equilibrium for θ = θ c in Figure 6, we then approach three dierent, but discontinuous, shapes. Considering a reduced number of eigenvalues in the unstable range, solutions show a basic pattern which is a nearly constant function with a jump at the membrane (as in Figure 7). Decreasing θ, we get more complex and stier shapes depending on the number of unstable modes found in the interval (η -, η + ) (see Figures 8 ,9).

Values of the permeability coecients

We show here another set of simulations in which we vary only the permeability coecient k v ∈ [0, +∞] (then, k u , given the coupling k u = θk v deducible from ( 12)) in the data chosen in (36). So, we better discover the eect of the membrane on Turing patterns. In particular, we can distinguish two limiting situations: k v = 0 = k u , which is the one without transmission and it corresponds to have two separate and not communicating domains, and k v = +∞ = k u (numerically realised taking k v = 10 8 ), i.e. we have full permeability at the membrane, so it corresponds to have a unique connected domain. In this two extreme cases, we recover the results of a standard reaction-diusion system without the eect of the membrane. Considering dierent values of the permeability coecients, we can estimate the position of the eigenvalues on the real lines and then, in the unstable interval, in order to follow the same arguments as in the previous subsection. Indeed, we recall the dependence on k v of the eigenvalues equation ( 27) such that if

η n = 0, we have that √ η n tan √ η n √ D vr L 2 = 2 k v √ D vr .
In the case

k v = 0 = k u , the previous equation reduces to sin L 2 √ η n √ Dvr
= 0 and so we can calculate the eigenvalues as

η n = D vr (2n) 2 π 2 L 2 .
In the case

k v = +∞ = k u , we have cos L 2 √ η n √ Dvr
= 0 and, then, the eigenvalues are of the form

η n = D vr (2n + 1) 2 π 2 L 2 .
We can arm that the eigenvalues η k n related to a certain value of k = k u , k v ∈ (0, +∞) are situated between the eigenvalues η 0 n for k = 0 and the ones for k = +∞, i.e. η ∞ n . Moreover, xing n and varying k, the eigenvalues η k n pass continuously from η 0 n to η ∞ n . This can be observed in two dierent ways: from a numerical result or a more analytical one.

Numerical result

For L = 1, we consider the continuous function

q : ξ -→ ξ tan ξ 2 -2 k v D vr . (38) 
Numerically, we nd the zeros ξ n = √ η n √ Dvr , n ≥ 0 for dierent values of kv Dvr and, then, of k v (see Table 1). Then, we recover the previous eigenvalue formulas for the two limiting situations and we can also observe that for xed n, the eigenvalues η kv n increase continuously with k v towards η ∞ n .

k v /D vr ξ 1 ξ 2 ξ 3 ξ 4 0 0 2π 4π 6π 

Analytical result

Another way to look at this phenomenon and to better observe continuity of the ξ n 's changing k v and xing n, it is to represent the function in (38) (see Figure 10). We consider n = 1 and so the interval ξ ∈ (0, π). Since we have a monotonous function for ξ ∈ (0, π), there exists a unique intersection with the horizontal line y = k := 2 kv Dvr = 2 ku Dur and for 0 < k 1 < k 2 < +∞, we get 0 < ξ k1 1 < ξ k2 1 < +∞. Remark 4.1. For k u = k v = 0, the eigenvalue 0 is double. This is because we have two dierent domains with Neumann boundary conditions and so for both we nd the zero eigenvalue.

In Example 4.1, we refer to Table 1 and to the fact that the rst non-zero eigenvalue for k v = +∞ = k u is smaller than the one for k v = 0 = k u . So, we look for an unstable range such that η ∞ 1 ∈ (η -, η + ) but η 0 1 / ∈ (η -, η + ). Then, we expect to see a dierent behaviour of the solutions. We perform also an intermediate case in which k v is small but positive in order to see the evolution in shapes passing from a situation in which there are no unstable modes to another one in which there is only one of them. In Example 4.2, we show the appearance and the evolution of patterns in both the limiting cases and an intermediate one.

Example 4.1. We look for some appropriate values of the diusion coecients in order to have η + ∈ [D vr π 2 , D vr 4π 2 ). In that way, we expect to see patterns for k v ∈ (0, +∞], since the rst eigenvalue is in the unstable range (see Table 1). Instead, for k v = 0, there is any non-zero eigenvalue in (η -, η + ), then solutions should converge to the steady state in (35). Therefore, choosing θ = 10 -2 in (36), we infer that η + = 30.01 ∈ [π 2 , 4π 2 ). The results are the following. Case 1. We take k v = 0 and the other data according to (36) (θ = 10 -2 , k u = 0). For construction, we gain the absence of patterns.

Figure 11: As expected, taking k v = 0, we can appreciate the convergence to the steady state (u, v) previously found. Indeed, we choose the data in order to not include positive eigenvalues in the unstable interval (η -, η + ) in the case of zero permeability.

Case 2. We take k v = 10 -2 and the other data according to (36) (θ = 10 -2 , k u = 10 -6 ). We gain a single unstable mode which is η 1 = 0.04.

Figure 12:

In the case k v = 10 -2 , we can nd a small positive eigenvalue in a neighbourhood of zero which is then in the unstable range (0, 30.01). Then, we observe the appearance of a simple pattern which is only a piecewise function with a jump at the membrane. In the zoom circles, we focus the attention on solutions derivatives at the membrane to better appreciate that membrane conditions are satised. Moreover, the sign of the derivatives corresponds to the sign of the jump.

Case 3. We consider k v = 10 8 and the other data according to (36) (θ = 10 -2 , k u = 10 4 ).

Figure 13: As built, for k v = +∞, we see the appearance of continuous patterns, since the permeability coecients are really big. Indeed, the shape corresponds to the one seen in Figure 12 but, at the membrane, the jump is now reduced to zero.

Example 4.2. We show the evolution of patterns varying k v ∈ [0, +∞] and xing θ. We choose the setting of Case 3 in Figure 8. Then, we take θ = 3 • 10 -4 in (36).

Case 1. We consider k v = 0 and the other parameters according to the data in (36) (θ = 3 •10 -4 , k u = 0). The number of eigenvalues in the unstable interval (η -, η + ) is 5.

Figure 14: Choosing k v = 0, we clearly see patterns for u and v. In particular, they are similar to the one observed in Figure 8. A remarkable dierence is at the membrane where Kedem-Katchalsky conditions are broken and they become standard homogeneous Neumann boundary conditions.

Case 2. We take k v = 10 and the other parameters according to (36) (θ = 3•10 -4 , k u = 3•10 -3 ).

Figure 15: With k v = 10, solutions converge to an unexpected shape. There are 6 unstable modes which are not enough to generate a convergence to a more complex pattern, as it could happen with only 3 eigenvalues more in the case θ = 10 -4 (as represented in the summary Table 2 in Section 5).

Case 3. We choose k v = 10 8 with the other data as in (36) (θ = 3 • 10 -4 , k u = 10 4 ).

Figure 16: With k v and k u suciently large, the jump at the membrane (seen in Figure 15) is reduced to an innitesimal. Since, the number of unstable modes is small, the same behaviour in Figure 13 is recover.

To sum up, in this two examples we can observe a particular pattern behaviour, for intermediate k v ∈ (0, +∞) and for a small number of unstable modes, or equivalently, θ nearby θ c , which does not occur with smooth Turing instability. Indeed, the transition from the case of two separate domain for k v = 0 to a unique entire one for k v = +∞ is realized through a discontinuous state, which is a nearly constant function with a jump at the membrane.

Eect of the parameter ε

Another interesting parameter is ε, as briey explained choosing reaction terms in Subsection 4.1. We remember that the smaller we take ε, the faster are the reactions and the more numerous are the patterns. However, in the limit ε → 0, Turing instability for fast reaction-diusion systems turns out to be equivalent to the instability due to backward parabolicity for the limiting cross-diusion equations, Moussa et al. [START_REF] Moussa | Backward parabolicity, cross-diusion and Turing instability[END_REF], Perthame and Skrzeczkowski [START_REF] Perthame | Fast reaction limit with nonmonotone reaction function[END_REF]. Here, we show the changing of patterns for the solutions u (left) and v (right) decreasing the value of ε in dierent membrane scenarios. Again, we consider the data setting presented in Subsection 4.1.

In particular, we choose data in (36) with θ = 10 -4 and a varying ε.

As previously stressed, we need to look at the instability interval (η -, η + ) in (33) which increases in size as ε decreases to zero. This implies that the number of eigenvalues (given by Equation ( 27)) in that interval increases as ε goes to zero. Then, xing the membrane permeability k v , we expect to see more complicated shapes as ε → 0. Instead, xing ε and varying k v , we gain or lose (depending on the ε value) at most one unstable mode. This is why xing ε patterns with dierent k u , k v are comparable. Case 1. We consider k v = 0 and the other parameters according to data in (36) (θ = 10 -4 , k u = 0, ε varies). Indeed, we have not communicating domains in which we consider a reaction-diusion system with reaction that is faster decreasing ε. Finally, as ε converges to zero, we numerically observe convergence to instability due to backward parabolicity for the limiting cross-diusion equations. Indeed, we remark that, from a numerical point of view, the convergence to zero is already attained with ε = 1/100. Fixing ε and varying k v , we observe similar behaviour as in the previous subsections.

Conclusions

Turing instability for a standard reaction-diusion problem is known to be a universal mechanism for pattern formation. We questioned the eect on pattern formation of a permeable membrane at which we have dissipative conditions. This interest follows both a path started in the study of membrane problems, Ciavolella et al. [START_REF] Ciavolella | Eective interface conditions for a model of tumour invasion through a membrane[END_REF], Ciavolella and Perthame [START_REF] Ciavolella | Existence of a global weak solution for a reactiondiusion problem with membrane conditions[END_REF], and their importance in biology. Then, we have studied Turing instability from both an analytical and a numerical point of view for a reaction-diusion membrane problem of two species u and v as in [START_REF] Almeida | Energy and implicit discretization of the Fokker-Planck and Keller-Segel type equations[END_REF].

Our method relies on a diagonalization theory for membrane operators. A detailed proof of related results in Appendix A is left to more analytical studies. Thanks to this theory, in Section 2, we could perform an analogous analysis of Turing instability as in the standard case without membrane under the hypothesis to have equal eigenfunctions for the membrane Laplace operator associated to the two species. This condition is related, thanks to Lemma 2.1, to restrictions [START_REF] Evans | Partial dierential equations[END_REF] and [START_REF] Gallinato | Tumor growth model of ductal carcinoma: from in situ phase to stroma invasion[END_REF]. We left as an open problem the identication of cases in which these constraints can be eliminated.

In order to pass to the numerical analysis, we have introduced in Section 3 the one dimensional problem and the explicit solutions of the eigenvalue problem. Membrane Laplace eigenvalues are implicitly dened by Equation ( 27), since we have chosen to introduce the condition ν D = 1. This could be avoided under biological reasons considering, then, Equation (25b). Moreover, choosing a proper domain, it is possible to extend the analyses in the two-dimensional case.

Concerning numerical examples in Section 4, it is possible to take more complex and more realistic data. A more extensive study, with other nonlinearities, is of interest. Moreover, we have xed the diusion coecient D v whose role is of interest also.

In Table 2, we sum up the dierent patterns observed in Subsection 4.2 and 4.3, decreasing the diusion ratio θ = D ul Dur = D vl Dvr from the critical value θ c = 3.1 • 10 -1 (from left to right in the rows) and increasing the permeability coecient values k v ∈ [0, +∞] (from top to down in the columns). We consider only the activator u and we take reaction terms as in [START_REF] Serani | Mathematical models for intracellular transport phenomena[END_REF], initial data as in Figure 4 and data setting as in (36). We recall that the spatial interval of study is [0, 1]. We stress on the fact that the rst (k v = 0) and last (k v = +∞) row correspond to Turing instabilities observed in a reaction-diusion problem on a half domain and on the full one respectively. Hence, it is coherent that decreasing θ the number of patterns increases in the biggest domain. 2: We summarise the evolution of patterns varying θ and k v .The rst column corresponds to the value θ = θ c , in which case there are no unstable modes. Then, for all k v , convergence to the steady state is observed. For θ = 10 -2 , we have again zero eigenvalues for k v = 0 and one eigenvalue for k v ∈ (0, +∞]. So, we observe convergence respectively to a steady state and a simple pattern, discontinuous in the case k v = 1. For θ small enough (θ = 10 -3 , 10 -4 , 10 -5 ), we observe more complex patterns with the main discontinuity property in the case of a nontrivial k v (second row). We remark that in the picture for θ = 10 -5 and k v = 1, the jump is really small compared to the axis scale (see Figure 9).

Surprisingly, not only adding diusion but also adding dissipative membrane conditions, we observe the equilibria stability's break. As in the classical Turing analysis, decreasing θ, we get more complex patterns. Contrary to standard Turing instability, with non-trivial membrane permeability, discontinuity at the membrane characterizes the steady state. Moreover, for θ in a neighbourhood of θ c and k v ∈ (0, +∞), a singular pattern appears. Indeed, it is a simple nearly constant function with a jump at the membrane.

In Subsection 4.4, we have numerically studied a fast reaction-diusion membrane system, leaving a rigorous analysis as an open problem. Again, discontinuity characterizes instability for k v ∈ (0, +∞).

Theorem A.1 (Diagonalization theorem for compact, self-adjoint membrane operators.). Let A be a compact, membrane operator on a separable Hilbert space H with innite dimension. There exists a sequence of real numbers {λ n } n∈N such that {|λ n |} n∈N is non increasing, converges to zero and such that:

for any n such that λ n is non-zero, λ n is an eigenvalue of A and E n := ker(A -λ n I) is a subspace of H with nite dimension; moreover, if λ n and λ m are distinct, their corresponding eigenspaces are orthogonal;

if E := Span n ∈ N λn = 0 E n , then ker(A) = E ⊥ ;
Indeed, Theorem A.1 applies to the inverse operators L -1 and L -1 . Therefore, we can nd also for L and L a sequence of eigenvalues and a basis of eigenfunctions.

We show here below that the inverse operators verify the hypothesis of this theorem. At rst, we introduce the bilinear forms associated to the membrane operators. Then, we prove the hypothesis of the Lax-Milgram Theorem. The following denition is requested. Denition A.1. We dene the Hilbert space of functions H 1 = H 1 (Ω l ) × H 1 (Ω r ). We endow it with the norm

w H 1 = w 1 2 H 1 (Ω l ) + w 2 2 H 1 (Ωr) 1 2 
.

We let (•, •) H 1 be the inner product in H 1 .

We dene the bilinear forms associated with these membrane elliptic operators as

B[ϕ, φ] = Ω l D ul ∇ϕ l ∇φ l + Ωr D ur ∇ϕ r ∇φ r + Γ D u k u (ϕ r -ϕ l )(φ r -φ l ), B[ϕ, φ] = Ω l D vl ∇ϕ l ∇φ l + Ωr D vr ∇ϕ r ∇φ r + Γ D v k v (ϕ r -ϕ l )(φ r -φ l ), (39) 
for ϕ, φ ∈ H 1 . We remark that B and B are symmetric. For simplicity, we consider the membrane operator L. We can follow the same steps for L. We want to apply the Lax-Milgram theory, Brezis [START_REF] Brezis | Functional analysis, Sobolev spaces and partial dierential equations[END_REF], Evans [START_REF] Evans | Partial dierential equations[END_REF]. We can readily check continuity and coercivity for B.

B is continuous. Thanks to the Cauchy-Schwarz inequality and the continuity of the trace, we can write

|B[ϕ, φ]| ≤ λ=l,r ( D uλ ∇ϕ λ L 2 (Ω λ ) ∇φ λ L 2 (Ω λ ) + D uλ k u [ϕ] L 2 (Γ) [φ] L 2 (Γ) ) ≤ λ,σ=l,r ϕ λ H 1 (Ω λ ) φ λ H 1 (Ω λ ) + D uλ k u ϕ λ H 1 (Ω λ ) φ σ H 1 (Ωσ) ≤ C ϕ H 1 φ H 1 ,
B is coercive. Indeed, if we assume Ω l ∪Ωr ϕ = 0, we can estimate

B[ϕ, ϕ] = Ω l |∇ϕ| 2 + Ωr |∇ϕ| 2 + Γ k i |ϕ r -ϕ l | 2 ≥ C ϕ 2 H 1
with a membrane version of the Poincaré-Wirtinger inequality on a product space (this theory would not be analysed in this chapter since it is more a functional analysis result which is not of main interest in Turing theory). With the same assumption, we can check continuity and coercivity of B. Therefore, the Lax-Milgram theory in this context assuming that Ω l ∪Ωr w = 0. Then there exists a unique function w ∈ H 1 solving

B[w, ϕ] = (λw, ϕ) H 1 , ∀ϕ ∈ H 1 . (40) 
Whenever (40) holds, we write w = λL -1 w.

The inverse operator L -1 : (H 1 ) -1 → H 1 is a compact operator in L 2 (Ω l ) × L 2 (Ω r ), since according to the Rellich-Kondrachov theorem H 1 ⊂⊂ L 2 . Moreover, it is also a self-adjoint one, Taylor [START_REF] Taylor | Partial Dierential Equations III: Nonlinear Equations[END_REF]. Indeed, the operators L and L are self-adjoints (we can prove it, since they are maximal monotone symmetric operators, Brezis [START_REF] Brezis | Functional analysis, Sobolev spaces and partial dierential equations[END_REF], Serani [START_REF] Serani | Mathematical models for intracellular transport phenomena[END_REF]). The standard spectral theory for compact and self-adjoint operators seen in Theorem A.1 applies in this context. We deduce that there exists a sequence of real number {σ n } n∈N such that {|σ n |} n∈N is non increasing and converging to zero. Moreover, if σ n and σ m are distinct, their corresponding eigenspaces are orthogonal. We call {w n } n∈N the basis of eigenfunctions of L -1 . So, we infer that L has an orthonormal basis of L 2 (Ω l ) ∪ L 2 (Ω r ) of eigenfunctions {w n } n∈N related to a sequence of increasing and diverging eigenvalues {λ n } n∈N such that λ n = 1 σn , for all n ∈ N.

Remark A.1. The mean zero property can be interpreted as if we are taking the eigenfunctions in the orthogonal space of the constants. In fact, the existence of a sequence of eigenvalues and of orthogonal eigenfunctions in the diagonalization theorem can be proven through a minimisation process starting from the rst zero eigenvalue and looking for the eigenspaces as the orthogonal spaces of its eigenfunction which is a constant.

B Numerical method

We illustrate the one-dimension numerical method, Morton and Mayers [START_REF] Morton | Numerical solution of partial dierential equations: an introduction[END_REF], Quarteroni et al. [START_REF] Quarteroni | Numerical mathematics[END_REF], used to perform the examples in Section 4. We present the discretization on the interval I = (a, x m ) ∪ (x m , b) =: I l ∪ I r of the one-dimension reaction-diusion System (1).

In the following, for simplicity, we write the numerical expressions for the equations of u, but with the same steps we can obtain the discretization also for v. We consider a space discretization (see Almeida et al. [START_REF] Almeida | Energy and implicit discretization of the Fokker-Planck and Keller-Segel type equations[END_REF]) of each subdomain I l and I r in N l + 1 and N r + 1 points respectively. We observe that this distinction allows to consider not centred membranes. In our case with the membrane in the middle point x m , we infer that N l = N r . Concerning the membrane, the key aspect is to discretize this point as two distinct ones since the Kedem-Katchalsky conditions are constructed dening the right and left limit of the density on the membrane (see Ciavolella and Perthame [START_REF] Ciavolella | Existence of a global weak solution for a reactiondiusion problem with membrane conditions[END_REF]). Moreover, the space step turns out to be ∆x = xm-a N l +1 = b-xm Nr+1 , with N l , N r ∈ N. The mesh is formed by the intervals

I i = x i-1 2 , x i+ 1 2
, i = 1, ..., N l + 1, J j = x j-1 2 , x j+ 1 2 , j = 1, ..., N r + 1.

The intervals are centred in x i = i∆x, i = 1, ..., N l + 1 and x j = j∆x, j = 1, ..., N r + 1 with I N l +1 = J 1 . Moreover, as the reader can remark, we add ghost points to build the extremal intervals in the left I 1 , I N l +1 and in the right J 1 , J Nr+1 . Then, we consider the ghost points for i = 0, N l+2 and j = 0, N r+2 . At a given time, the spatial discretization of u(t, x), interpreted in the nite volume sense, is of the form u i (t) ≈ 1 ∆x Ii u l (t, x) dx, u j (t) ≈ 1 ∆x Jj u r (t, x) dx, Substituting µ l , µ r , k u with the notation σ l D vl ∆t ∆x 2 , σ r = Dvr∆t ∆x 2 and k v , we can write the matrix C and D. We report the core of the Matlab code here below. 

Figure 1 :

 1 Figure 1: We represent here the function ξ -→ r(ξ) in (26), considering L = 1, D vl = 10 -1 , D vr = 10 -2 and k v = 10 -4 . Its roots correspond to the eigenvalues η n .

Figure 2 :

 2 Figure 2: Same as Figure 1, with ν D = 1, and D vr = D vl = 10 -2. That is relation[START_REF] Sala | FGF10 controls the patterning of the tracheal cartilage rings via Shh[END_REF], in place of[START_REF] Quarteroni | Numerical mathematics[END_REF].

Figure 3 :

 3 Figure 3: We represent h(u) in (29)-(30) (left picture) and h (u) (right picture) with α = 1. In dashed lines, the instability region for u and h(u) = v.

Figure 4 :

 4 Figure 4: Representation of the initial data u 0 (in the left) and v 0 (in the right).

Figure 8 :

 8 Figure 8: Choosing θ = 3 • 10 -4, we succeed in having more considerable patterns for both the species u and v in the temporal limit. Moreover, it is again clear the well-verication of membrane conditions. As remark, we underline that until 5 eigenvalues in (η -, η + ), over long time interval, the shape does not change signicantly respect to Figure7. Then, the diusion ratio θ has to be suciently small to appreciate more complex patterns.

Figure 10 :

 10 Figure 10: Representation of the rst root ξ 1 of q in (38), as the intersection between the function q : ξ -→ ξ tan ξ 2 for ξ ∈ (0, π) (solid line) and one of the dashed lines dened by the permeability coecient by the relation k := 2 kv Dvr = 2 ku Dur .

ε = 10 .

 10 

Figure 17 :

 17 Figure 17: We represent the convergent solutions for ε = 10. Diusion prevails over reaction, then solutions are smooth and we can appreciate the emergence of patterns.

Figure 18 :

 18 Figure 18: In the case ε = 1, solutions does not change signicantly respect to ε = 10 (we have only 5 unstable modes) but the slope is increasing. This scenario corresponds to the standard reaction-diusion diusion one analysed until now.

Figure 19 :

 19 Figure19: It is with ε = 1/5 that we can see that the patterns are becoming more discontinuous, since numerically we are approaching the zero limit.

Figure 20 :

 20 Figure 20: With ε = 1/20, high frequency of oscillations are clearly appreciated. Numerically, we are converging to zero and then Turing instability is equivalent to instability and discontinuity of the ill-posedness of the backward parabolicity for the cross-diusion system.

Figure 21 :

 21 Figure 21: Discontinuities are dominant with ε = 1/100. The right picture representing v has similar shapes has the one for ε = 1/20 but here the jump is more remarkable. The number of eigenvalues in the unstable range is really high and the slope in the patterns is diverging. We are far away from the smooth and regular patterns observed with slower reactions.

Figure 22 :

 22 Figure22: With ε = 10, the slow reaction is not prevailing signicantly on the diusion (since increasing the value of ε, reactions converge to zero). The permeability of the membrane promotes dissipation but a slope nearby the interface is still observed.

Figure 23 :

 23 Figure 23: Coming back to a standard reaction-diusion equation with ε = 1, we observe a similar shape as in the case k v = 0 but we can appreciate a little slope nearby the membrane.

Figure 24 :

 24 Figure 24: Reducing ε, slopes increase but the jump at the membrane is less signicant since membrane derivatives are really small with the data chosen.

Figure 25 :

 25 Figure 25: As in the case k v = 0, oscillations are increasing respect to Figure 24.

Figure 26 :

 26 Figure 26: Taking ε = 1/100 and k v > 0, instabilities are dominant and patterns for v (in the right) are more remarkable than in the case k v = 0, even if the shape is still unchanged.

Figure 27 :

 27 Figure 27: The jump between the right and left side solutions in Figure 22 is now lled and we can observe continuous solutions.

Figure 28 :

 28 Figure 28: With ε = 1, the continuous solutions are similar to the following case ε = 1/5 but they are more regular.

Figure 29 :

 29 Figure 29: With ε = 1/5, pictures can be well predicted from Figure 24.

Figure 30 :

 30 Figure30: Again with ε = 1/20, we are approaching the zero numerical limit. Then, the appearance of membrane continuous, but not smooth instabilities can be observed in both u and v.

Figure 31 :

 31 Figure 31: For ε = 1/100, oscillations are now continuous at the membrane respect to Figure 26

Listing 1 : 4 x= 8 % 9 %

 1489 Matlab code 1 Nt=fix(T/dt); % number of time points in the grid 2 x1=[a:dx:xm]; x2=[xm:dx:b]; % x1 is the mesh in I _ l and x2 in I _ r 3 Nl=length(x1)-1; Nr=length(x2)-1; % there are Nl+1 points in I _ l and Nr+1 in I _ r (with the membrane in the middle point they turns out to be the same) We write the system in the matrix form using spdiags since A,B,C,D are tridiagonal matrix We call A1 and A2 the matrix of the entire system of u and v 10 A1=[A , zeros(Nl+Nr+2,Nl+Nr+2) ; zeros(Nl+Nr+2,Nl+Nr+2), C]; 11 A2=[B,zeros(Nl+Nr+2,Nl+Nr+2);zeros(Nl+Nr+2,Nl+Nr+2),D]; 12 %data for the Gauss method 13 dim=length(A1); aa=[diag(A1,-1);0]; bb=diag(A1); cc=[0;diag(A1,1)];

17 F= 18 G=

 1718 dt/eps * (Z(i,Nl+Nr+3:2 * Nl+2 * Nr+4)-k * Z(i,1:Nl+Nr+2). * (Z(i,1:Nl+Nr+2)-1).^2); (i,1:Nl+Nr+2), Z(i,Nl+Nr+3:2 * Nl+2 * Nr+4)]'; 21 R=[F,G]'; ss= A2 * z + R ;

22 23 % 33 34 for j=dim- 1 :- 1 : 1 %

 222333111 Gauss methode to solve the system A1 * z=ss with a tridiagonal matrix 24 g=zeros(dim,1); piv=bb(1); % piv=pivot 25 yy(1)=ss(1)/piv; % yy contains the solution of the system 26 for j=2:dim % to obtain an A1 equivalent bidiagonal matrix (main diagional and first one above it) 28 g(j)=cc(j)/piv; % elements of the diagonal above the main diagonal 29 piv=bb(j)-aa(j-1) * g(j); 30 if piv==0, disp('error: there is a pivot equal to zero'), return, end 31 yy(j)=(ss(j)-aa(j-1) * yy(j-1))/piv; % elements of ss modified by the algorithm 32 end Gauss algorithm on the bidiagonal matrix 35 yy(j)=yy(j)-g(j+1) * yy(j+1); 36 end 37 z=yy; %solution of the sistem A1 * z=ss 38 39 Z(i+1,1:Nl+Nr+2)=z(1:Nl+Nr+2); %u 40 Z(i+1,Nl+Nr+3:2 * Nl+2 * Nr+4)=z(Nl+Nr+3:2 * Nl+2 * Nr+4);%v 41 42 end

Table 1 :

 1 We report the values of the rst four zeroes ξ n = Dvr , n = 1, ..., 4 for dierent values of k v , since D vr is xed, including the two limiting cases and two intermediate ones.

	0.5	0.41π 2.09π 4.05π 6.04π
	5	0.83π 2.56π 4.39π 6.29π
	10 8	π	3π	5π	7π
				√ η n √	
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A Diagonalization theory on membrane operators

We introduce the diagonalization result, Brezis [2], Evans [12], for membrane operators which assures the existence of a sequence of eigenvalues and eigenfunctions that solve each problem in (4) and (5).

for i = 1, ..., N l + 1 and j = 1, ..., r + 1. Concerning the time discretization, we consider the time step ∆t such that the mesh points are of the form t n = N t ∆t, with N t ∈ N. The discrete approximation of u(t, x), for n ∈ N, i = 1, ..., N l + 1 and j = 1, ..., N r + 1, is now

We write the time discretization as an Euler method and the space one with a generic Θ-method.

In the simulations, we have chosen Θ = 1, meaning that the method is an implicit and always stable one. For the sake of simplicity, we consider a unique index i instead of i, j. In the following, we take 0 ≤ n ≤ N t and we call δ 2

Then, we obtain

with µ l = D ul ∆t ∆x 2 and

Finally, we deduce the systems for i = 1, ..., N l + 1,

Now, we exhibit the rst order discretization of the boundary conditions. Starting from Neumann, we can distinguish the condition in a and b as

which give the relation of the extremal ghost points. From the Kedem-Katchalsky membrane conditions, we deduce the expression of the membrane ghost points

Substituting the ghost values found in (43) and (44) in the systems (41) and (42), we get the equations at the extremal points:

At the left limit on the membrane,

At the right limit on the membrane,

In a,

In b,

To conclude, system (41) for i = 1, ..., N l and (42) for i = 1, ..., N r , written for the internal points of the grid, combined with the equations for the extremal points (45), ( 46), ( 47) and ( 48), build the discretized system of u. The same equations with the proper coecients can be found for v. Calling the vector solutions at time t n as

and the reaction vectors as

we can write the discretized systems in a matrix form as AU n+1 = BU n + ∆tF n coupled with CV n+1 = DV n + ∆tG n , where A :=