Generalized Wasserstein barycenters between probability measures living on different subspaces
Résumé
In this paper, we introduce a generalization of the Wasserstein barycenter, to a case where the initial probability measures live on different subspaces of R d. We study the existence and uniqueness of this barycenter, we show how it is related to a larger multimarginal optimal transport problem, and we propose a dual formulation. Finally, we explain how to compute numerically this generalized barycenter on discrete distributions, and we propose an explicit solution for Gaussian distributions.
Origine | Fichiers produits par l'(les) auteur(s) |
---|