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GENERALIZED WASSERSTEIN BARYCENTERS BETWEEN

PROBABILITY MEASURES LIVING ON DIFFERENT SUBSPACES

JULIE DELON, NATHAËL GOZLAN, AND ALEXANDRE SAINT-DIZIER

Abstract. In this paper, we introduce a generalization of the Wasserstein barycenter, to
a case where the initial probability measures live on different subspaces of Rd. We study
the existence and uniqueness of this barycenter, we show how it is related to a larger multi-
marginal optimal transport problem, and we propose a dual formulation. Finally, we explain
how to compute numerically this generalized barycenter on discrete distributions, and we
propose an explicit solution for Gaussian distributions.

1. Introduction

In recent years, optimal transport [29] has received a lot of attention and has become an
essential tool to compare or interpolate between probability distributions. The apparition of
efficient numerical approaches has made optimal transport particularly successful in numer-
ous applied fields such as economy [17], image processing [10, 16, 11], computer vision [20],
astrophysics [15, 23], machine learning [6, 19] and computer graphics [24], to name just a few
(for a recent monograph on numerical optimal transport, see [27]).

An important tool derived from optimal transport is the notion of Wasserstein barycenter
introduced by Agueh and Carlier in [2] (see also [4]). In the Euclidean case, the barycenter
of x1, . . . , xp with weights λ1, . . . , λp (positive and summing to 1) is the point x of Rd which

minimizes
∑p

i=1 λi|x − xi|2, where | . | denotes the Euclidean norm on Rd. The Wasserstein

barycenter is obtained in the same way in the space P2(Rd) of probability measures with second
order moments, by replacing the Euclidean distance by the square Wasserstein distance W2.

In this paper, we propose a generalization of the notion of Wasserstein barycenter, to a case
where the considered probability measures live on different subspaces of Rd. Relying on the
same Euclidean analogy as above, for p vectors xi ∈ Rdi and p linear transformations Pi : Rd →
Rdi , i = 1, . . . , p, a generalized barycenter between these xi can be defined as a minimizer in
Rd of

∑p
i=1 λi|Pi(x)− xi|2. A solution is given by x̂ = (

∑p
i=1 λiP

T
i Pi)

−1(
∑
λpi=1P

T
i xi) when

the matrix
∑p

i=1 λiP
T
i Pi is full rank. Our generalized Wasserstein barycenter is obtained by

replacing the vectors xi by p probability measures νi on their respective subspace Rdi and the
Euclidean distance by W2. In other words, we study the minimization problem

(1) inf
γ∈P2(Rd)

p∑
i=1

λiW
2
2 (Pi#γ, νi),

where Pi#γ denotes the push-forward of γ by Pi, i.e. the measure on Rdi such that ∀A ⊂
Rdi , (Pi#γ)(A) = γ(P−1

i (A)). Figure 1 illustrates this notion on an 3D example with four
projections on different planes. A solution γ of (1) realizes a consensus between all the νi for
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Figure 1. Generalized barycenter. In this example, the transformations
Pi : R3 → R2 are linear projections from R3 on four different plans. Knowing
the four probability measures ν1, . . . , ν4 on these four plans, we look for the
3d probability measure γ which realizes a consensus between these four pro-
jections, in the sense described by Equation (1).

the Wasserstein distance W2, through the transformations Pi. Observe that in most cases,
the problem will have an infinity of solutions, since any measure µ such that Pi#µ = Pi#γ
for all i will also be solution. For instance, if Rd = Rd1 × · · · × Rdp and the Pi are canonical
projections on the subspaces Rdi , any µ with marginals ν1, . . . , νp will be solution. This
formulation generalizes the classical notion of Wasserstein barycenter [2], obtained when all
the Pi are equal to Id, the identity application on Rd.

Gaspard Monge, one of the founding fathers of optimal transport, is also the father of
descriptive geometry [25], and one of the goals of this discipline is to represent information
about a three dimensional volume or surface from several well chosen two dimensional pro-
jections. An obvious application of the generalized barycenter is precisely the reconstruction
of a measure in d dimensions from the knowledge of projections of this measure on different
subspaces. In practice, these projections can be noisy or contain errors, and therefore do not
necessarily coincide on their common subspaces.

A concrete application where a distribution must be reconstructed from a set of marginals
appears in image processing with patch-based aggregation [28]. Patches are small overlapping
image pieces and it is usual to infer stochastic models (for example a Gaussian or GMM
distribution) on these patches [12]. Typically, each of these models is a distribution in R9

(for 3× 3 patches). The aggregation problem consists in reconstructing a distribution on the
whole image (hence in Rd with d very large) from the knowledge of all these overlapping (and
generally not coinciding) models on patches.

More generally, the reconstruction of a multidimensional distribution from a finite set of
projections appears in many applied fields, for instance in medical or geophysical imaging [26].
In these applications, a system measures multiple 1D or 2D projections of a 3D density and
the objective is to reconstruct the 3D signal from these projections. The Fourier transform of
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these projections can be shown to be slices of the Fourier transform of the complete density. If
the knowledge of all the slices is theoretically necessary to reconstruct this Fourier transform,
in practical applications only a finite number of these slices is known, and they are interpolated
to reconstruct the Fourier transform and recover the complete density by Fourier inversion.

A particular instance of Problem (1), where all but one the Pi are one dimensional projec-
tions, and the last one is equal to Id, has been studied in [1] and also considered in [7], precisely
for tomographic reconstruction. The authors derive a dual formulation for the problem and
prove existence and uniqueness of the solution. Several of these results rely on the presence
of a fully dimensional prior (one of the Pi is invertible). We do not make this assumption
in this paper and study the problem in its full generality, without assumption on the linear
applications Pi. One of the obvious consequences is that in most cases, we lose uniqueness of
the solution of (1), but we show that most properties are preserved.

The contributions of the paper are the following. After a short reminder on Wasserstein
distances and Wasserstein barycenters in Section 2, we show in Section 3 the existence of
solutions for the minimization problem (1) and we explain how it is related to a multi-marginal
optimal transport problem in dimension

∑p
i=1 di. To this aim, we propose a convenient

reformulation of the generalized barycenter problem as a classical Wasserstein barycenter
problem between degenerate distributions ν̃i which are obtained from the νi. We then propose
in Section 4 a dual formulation for (1) (which contains the of [1] as a particular case). In
Section 5, we show that when the distributions νi are Gaussian, there is at least one Gaussian
solution to (1), we study the uniqueness of this Gaussian solution, and how to reconstruct
it in practice. Finally, we explain in Section 6 how to compute this generalized barycenter
numerically and we provide several numerical experiments to illustrate its behavior on discrete
and Gaussian distributions.

2. A short reminder on Wasserstein barycenters and multi-marginal optimal
transport

Let P2(Rd) be the set of probability measures on Rd with finite second order moment. For
two probability measures ν1, ν2 in P2(Rd), the Wasserstein distance W2(ν1, ν2) is defined as

(2) W 2
2 (ν1, ν2) := inf

X1∼ν1;X2∼ν2

E
(
|X2 −X1|2

)
= inf

π∈Π(ν1,ν2)

ˆ
Rd×Rd

|x2 − x1|2 dπ(x1, x2),

where Π(ν1, ν2) ⊂ P2(Rd × Rd) is the subset of probability distributions π on Rd × Rd with
marginal distributions ν1 and ν2.

It is well known that there always exists a couple (X1, X2) of random variables attaining
the infimum in (2) (see e.g. [29, Chapter 4]). This couple is named optimal coupling and its
distribution π is called an optimal transport plan between ν1 and ν2. This plan distributes all
the mass of the distribution ν1 onto the distribution ν2 with a minimal cost, and the quantity
W 2

2 (ν1, ν2) is the corresponding total cost. It is also well known that W2 defines a metric on
P2(Rd) (see e.g. [29, Chapter 6]).

The barycenter of x1, . . . , xp ∈ Rd, for positive weights λ1, . . . , λp summing to 1, is defined
as

(3) B(x1, . . . , xp) =

p∑
i=1

λixi = argminy∈Rd

p∑
i=1

λi|xi − y|2.
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Similarly, the Wasserstein barycenter of p probability measures ν1, . . . , νp for the positive
weights λ1, . . . , λp is a solution of the minimization problem

(4) inf
ν

p∑
i=1

λiW
2
2 (νi, ν).

If all weights are equal to 1
p , a Wasserstein barycenter is also a Fréchet mean for the Wasser-

stein distance W2 (see [27]).
Agueh and Carlier have studied in depth the questions of existence and uniqueness of

barycenters for W2 in [2]. They show in particular that the solutions of this barycenter prob-
lem are related to the solutions of another optimization problem, called the multi-marginal
transport problem [18], which can be written

(5) inf
π∈Π(ν1,ν2,...,νp)

ˆ
Rd×···×Rd

p∑
i=1

|xi −B(x1, . . . , xp)|2 dπ(x1, x2, . . . , xp),

where Π(ν1, ν2, . . . , νp) is the set of probability measures on (Rd)p with ν1, ν2, . . . , νp as
marginals. The following proposition summarizes some of the main contributions of [2].

Proposition 2.1 (Agueh-Carlier [2]).

(1) Both Problems (4) and (5) admit solutions.
(2) If at least one of the probability measures νi has a density with respect to Lebesgue,

then Problem (4) admits a unique solution.
(3) If π∗ is a solution of (5), then ν∗ = B#π∗ is a solution of (4), and the infimum

of (5) and (4) are equal.

Other contributions of [2], in particular concerning the dual problem of (4), will be recalled
below.

3. Generalized Wasserstein barycenters

In the Wasserstein barycenter problem (4), the measures ν1, . . . , νp are seen as living in

the same space Rd. The generalized Wasserstein barycenters can be seen as a variant of this
problem, where the spaces in which the νi live are subspaces of a larger common space.

Definition 1 (GWB). Given p positive integers d1, . . . , dp, p probability measures (ν1, . . . , νp) ∈
P2(Rd1) × · · · × P2(Rdp), a vector λ = (λ1, . . . , λp) of positive weights summing to 1 and p

linear applications Pi : Rd → Rdi, define the functional

(6) F(γ) :=

p∑
i=1

λiW
2
2 (νi, Pi#γ), γ ∈ P2(Rd).

A solution γ∗ ∈ P2(Rd) of the minimization problem

(GWB) inf
γ∈P2(Rd)

F(γ)

is called a generalized Wasserstein barycenter of the marginals νi for the applications Pi.

Note that this formulation includes the classical notion of Wasserstein barycenter, by taking
di = d and Pi = Id, for all i ∈ J1, pK. Observe also that (GWB) is a convex minimization
problem. In the numerical experiments, we will always assume that for all i ∈ J1, pK, di ≤ d
and Pi is surjective.
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In Section 3.2 below, we will relate (GWB) to the classical Wasserstein barycenter problem.
This will in particular enable us to show existence of solutions for (GWB).

3.1. A technical reduction. In all what follows, we will denote by A the d× d symmetric
semidefinite matrix defined by

A =

p∑
i=1

λiP
T
i Pi

(here, and in all the paper, we make no difference between linear maps and their matrices in
the standard basis of Rd and Rdi).

As we will see, it will be very convenient to assume that the matrix A is invertible (or
equivalently positive definite). In the sequel, we explain that this is not a real restriction and
that it is always possible to reduce to this situation.

Lemma 3.1. The matrix A is positive definite if and only if

(7)

p⋂
i=1

Ker(Pi) = {0}.

Proof. Observe that, for all x ∈ Rd,

xTAx =

p∑
i=1

λix
TP Ti Pix =

p∑
i=1

λi|Pix|2

and so xTAx ≥ 0 with equality if and only if x ∈
⋂p
i=1 Ker(Pi). �

Lemma 3.2. Denote by K =
⋂p
i=1 Ker(Pi) and by PK⊥ the orthogonal projection on K⊥.

A probability measure ν ∈ P2(Rd) is solution to (GWB) if and only if PK⊥#ν is solution to
(GWB).

Proof. This comes from the fact, if X has law ν, then for all i ∈ J1, pK,

PiX = PiPK⊥X,

and so PiX and PiPK⊥X have the same law. �

Thanks to the preceding lemma, we see that solutions of (GWB) are the laws of random
vectors X of the form X = X1 + X2, where X1 takes values in K⊥, X2 in K and the law
ν1 of X1 is solution of (GWB). We have thus reduced the problem to determine solutions of
(GWB) supported on K⊥. For that purpose, let d̄ be the dimension of K⊥ and let e1, . . . , ed̄
be a basis of K⊥. For all i ∈ J1, pK, define

P̄i = PiQ,

where Q is the d× d̄ matrix of e1, . . . , ed̄ in the standard basis of Rd. If γ̄∗ is a minimizer of
the functional F̄ defined by

(8) F̄ :=

p∑
i=1

λiW
2
2 (νi, P̄i#γ̄), γ̄ ∈ P2(Rd̄),

then Q#γ̄∗ is a solution of (GWB) supported on K⊥. Finally, observe that

(9) Ā =

p∑
i=1

λiP̄
T
i P̄i

is now invertible.
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3.2. Reformulation of the generalized Wasserstein barycenter problem. In this sec-
tion, we assume that the matrix A defined in (7) is invertible. The goal of this section is to
relate the generalized Wasserstein barycenter problem to the usual one.

Recall the definition of the functional F given in (6) and let us introduce another functional
G : P2(Rd)→ R+ defined as follows

(10) G(µ) =

p∑
i=1

λiW
2
2 (ν̃i, µ), µ ∈ P2(Rd),

where, for all i ∈ J1, pK,

ν̃i = (A−1/2P Ti )#νi.

Note that the matrix A being symmetric and definite positive, it admits a unique square root
denoted by A1/2 which is itself invertible.

The following proposition will be used extensively in all the paper.

Proposition 3.1. A probability measure γ∗ ∈ P2(Rd) minimizes F if and only if µ∗ =

A1/2#γ∗ minimizes G.

In other words, γ∗ is a generalized Wasserstein barycenter of the νi for the applications
Pi and weights λi if and only if γ∗ = A−1/2#µ∗, where µ∗ is the Wasserstein barycenter
of the measures ν̃i with weights λi. Proposition 3.1 will enable us to extend to the case of
the generalized Wasserstein barycenter problem (GWB) many properties which are known in
the classical case. We will in particular use Proposition 3.1 to obtain a dual formulation of
(GWB) (see Section 4) and to study the case where the νi are Gaussian (see Section 5).

Proof. Let γ ∈ P2(Rd) ; setting µ = A1/2#γ, it follows from Lemma 3.3 below that

W 2
2 (νi, Pi#γ) =

ˆ
|x|2 dνi(x) +

ˆ
yTP Ti Piy dγ(y)− 2 sup

π̃∈Π(νi,Pi#γ)

ˆ
x · z dπ̃(x, z)

=

ˆ
|x|2dνi(x) +

ˆ
yTP Ti Piy dγ(y)− 2 sup

π∈Π(νi,γ)

ˆ
x · Piy dπ(x, y)

=

ˆ
|x|2 dνi(x) +

ˆ
yTP Ti Piy dγ(y)− 2 sup

π∈Π(νi,γ)

ˆ
P Ti x · y dπ(x, y)

=

ˆ
|x|2 dνi(x) +

ˆ
yTA−1/2P Ti PiA

−1/2y dµ(y)− 2 sup
π∈Π(νi,γ)

ˆ
A−1/2P Ti x ·A1/2y dπ(x, y)

=

ˆ
|x|2 dνi(x) +

ˆ
yTA−1/2P Ti PiA

−1/2y dµ(y)− 2 sup
π∈Π(ν̃i,µ)

ˆ
x · y dπ(x, y)

= W 2
2 (ν̃i, µ) +

ˆ
|x|2 − xTPiA−1P Ti x dνi(x) +

ˆ
yTA−1/2P Ti PiA

−1/2y − |y|2 dµ(y).

Therefore, summing these equalities and using (7) gives

F(γ) = C + G(µ),

with C =
∑p

i=1 λi
´
|x|2 − xTPiA−1P Ti x dνi(x). �

In the proof of Proposition 3.1 we have used the following result.
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Lemma 3.3. Let γ ∈ P2(Rd), ν ∈ P2(Rd′) and T : Rd → Rd′ be a measurable map. Then
π′ ∈ Π(ν, T#γ) if and only if there is some π ∈ Π(ν, γ) such that π′ = (Id, T )#π.
In particular, if there exist a, b ≥ 0 such that |T (x)| ≤ a+ b|x| for all x ∈ Rd, then

sup
π∈Π(ν,γ)

ˆ
x · T (y) dπ(x, y) = sup

π∈Π(ν,T#γ)

ˆ
x · z dπ(x, z).

Proof. If π ∈ Π(ν, γ) and π′ is the image of π under the application (x, y) 7→ (x, T (y)), then
it is clear that π′ ∈ Π(ν, T#γ).

Conversely, let us prove that all couplings between ν and T#γ is of this form. Let Y ∼ γ
and consider P = Law(Y, T (Y )). The coupling P admits the following disintegration

dP (y, z) = dγ′(z)dpz(y),

where γ′ = T#γ is the second marginal of P and (pz)z∈Rd′ is a probability kernel from Rd′ to

Rd. Let π′ ∈ Π(ν, T#γ) and define

dπ(x, y) = dπ′(x, z)dpz(y).

In other words, for all positive measurable function fˆ
f(x, y) dπ(x, y) =

ˆ
f(x, y) dpz(y)dπ′(x, z).

Thereforeˆ
g(x) dπ(x, y) =

ˆ
g(x) dpz(y)dπ′(x, z) =

ˆ
g(x) dπ′(x, y) =

ˆ
g(x) dν(x)

andˆ
g(y) dπ(x, y) =

ˆ
g(y) dpz(y)dπ′(x, z) =

ˆ
g(y) dpz(y)dγ′(z) =

ˆ
g(y) dP (y, z) =

ˆ
g(y) dγ(y),

which proves that π ∈ Π(ν, γ). Furthermore, since dπ′(x, z) = dγ′(z)dπ′z(x), it holdsˆ
f(x, T (y)) dπ(x, y) =

ˆ
f(x, T (y)) dpz(y)dπ′(x, z)

=

ˆ
f(x, T (y)) dpz(y)dγ′(z)dπ′z(x)

=

ˆ
f(x, z) dγ′(z)dπ′z(x)

=

ˆ
f(x, z) dπ′(x, z),

where the third equality comes from the fact that for γ′ almost every z, T (y) = z for pz almost
all y. One concludes that π′ = (Id, T )#π, which completes the proof. �

3.3. Existence of solutions for (GWB). We show in the following that the primal mini-
mization problem (GWB) has solutions and that a solution is generally not unique.

Proposition 3.2. The problem (GWB) has solutions. More precisely, the function F defined
in (6) admits at least one minimizer γ∗ ∈ P2(Rd). Moreover, if at least one of the measures
ν̃i is absolutely continuous the minimizer is unique.
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Proof. As explained in Section 3.1, one can assume without loss of generality that the matrix
A defined in (7) is invertible. According to Proposition 3.1, it is enough to show that G attains
its minimum. This follows from [2, Proposition 2.3]. Let us briefly recall the argument. The
functional G is lower semi-continuous (for the usual weak topology) and its sublevel sets
{G ≤ k}, k ≥ 0, are compact (thanks to Prokhorov Theorem), thus it attains its minimum.
Uniqueness follows from [2, Proposition 3.5]. It can also be derived from the strict convexity
of µ 7→W 2

2 (ν, µ), when ν has a density ([3, Corollary 2.10]). �

Let us emphasize that we don’t have uniqueness of the solution in general. Even if
A =

∑p
i=1 λiP

T
i Pi is invertible, if γ∗ is a solution, any probability distribution µ on Rd

satisfying Pi#γ
∗ = Pi#µ for all i = 1, . . . , p is also a solution of the minimization problem for

instance. The question of the existence and uniqueness of probability measures with known
and overlapping absolutely continuous marginals is an important problem in probability, see
for instance the recent [22].

The following proposition shows that in certain circumstances, the projections of generalized
barycenters are uniquely determined.

Proposition 3.3. Suppose that νi has a density on Rdi for all i ∈ J1, pK, then if γ1 and γ2

are solutions of (GWB), it holds Pi#γ1 = Pi#γ2 for all i ∈ J1, pK.

Proof. Let γ1 and γ2 be two solutions of (GWB), and let us assume by contradiction that
Pio#γ1 6= Pio#γ2 for some io ∈ J1, pK. Consider the function f(t) = F((1 − t)γ1 + tγ2),
t ∈ [0, 1]. Since for all i, Pi#((1 − t)γ1 + tγ2) = (1 − t)Pi#γ1 + tPi#γ2, the function f is
convex on [0, 1]. Moreover, since νio has a density and Pio#γ1 6= Pio#γ2, it follows from [3,
Corollary 2.10] that the function t 7→ W 2

2 (νio , (1 − t)Pio#γ1 + tPio#γ2) is strictly convex.
Thus f is strictly convex as well and so

f(1/2) = F
(

1

2
γ1 +

1

2
γ2

)
<

1

2
f(0) +

1

2
f(1) =

1

2
F (γ1) +

1

2
F (γ2) = minF ,

which contradicts the fact that γ1 and γ2 are minimizers of F and completes the proof. �

In the case of discrete measures supported by a finite number of points, we do not have
uniqueness for the classical barycenter [5] and this also holds true for the generalized barycen-
ter. However, if two solutions γ1 and γ2 of (GWB) in the discrete case are such that
Pi#γ1 = Pi#γ2 for all i ∈ J1, pK, with p large enough, then it can be shown that γ1 = γ2 since
a finite but large enough number of projections can characterize a point cloud [21, 14].

Figure 2 shows an example where the measures ν1, . . . , νp are all several 1d projections of
a discrete measure (in yellow) in R2. In this discrete case, the problem (GWB) has several
solutions, including the yellow distribution for which the value of the energy is 0. We show
in black the reconstruction of a probability measure with exactly the same projections (the
algorithm used for this reconstruction will be described in Section 6.1). We see that when
the number of 1d projections increases, the reconstructed measure gets closer to the discrete
yellow measure. For 5 projections, the reconstructed generalized barycenter is the same as
the original distribution in this example.

3.4. Link between (GWB) and multi marginal optimal transport . In this section, we
assume that the matrix A defined in (7) is invertible. For x = (x1, . . . , xp) ∈ Rd1 × · · · ×Rdp ,
we define the generalized Euclidean barycenter as follows

Bgen(x) = Bgen(x1, . . . , xp) = arg min
y∈Rd

p∑
i=1

λi|xi − Pi(y)|2 = A−1
p∑
i=1

λiP
T
i (xi),
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Figure 2. In this example, the measures ν1, . . . , νp are several 1d projections
of a discrete measure (shown in yellow) in R2. The number of projections varies
from 2 to 5. The reconstructed generalized barycenter is shown in black, illus-
trating the non uniqueness of the solution (the black distribution has exactly
the same projections as the yellow one). The larger the number of marginals,
the more accurate is the reconstruction. For 5 projections, the reconstructed
generalized barycenter is the same as the original distribution.

and we also define the cost c by

c(x) =

p∑
i=1

λi|xi − Pi(Bgen(x))|2, x = (x1, . . . , xp) ∈ Rd1 × · · · × Rdp .
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We propose to study the multimarginal problem for the measures ν1, . . . , νp and cost function
c, i.e.

(MM) inf

{ˆ
Rd1+···+dp

c(x) dπ(x), π ∈ Π(ν1, . . . , νp)

}
.

Proposition 3.4. The infimum in (MM) and (GWB) are equal. Moreover, if π∗ is a solution
of (MM), then γ∗ = Bgen#π∗ is a solution of (GWB).

Proof. Let us denote D = d1 + · · · + dp. First let us show that (GWB) ≤ (MM). Let
π ∈ Π(ν1, . . . , νp) and define γ = Bgen#π. For all i ∈ J1, pK, we define pi the projection from

RD = Rd1 × · · · × Rdp to Rdi such that pi(x1, . . . , xp) = xi, and define ηi = (pi, Pi ◦Bgen)#π.
By construction, ηi ∈ Π(νi, Pi#γ). Thus,

W 2
2 (νi, Pi#γ) ≤

ˆ
Rdi×Rdi

|x− y|2 dηi(x, y) =

ˆ
RD

|xi − (Pi ◦Bgen)(x)|2 dπ(x).

As a consequence, for all π ∈ Π(ν1, . . . , νp),

p∑
i=1

λiW
2
2 (νi, Pi#γ) ≤

ˆ
RD

c(x) dπ(x).

This holds for any π ∈ Π(ν1, . . . , νp) and thus (GWB) ≤ (MM).

Conversely, let γ ∈ P2(Rd) and for all i ∈ J1, pK, let ηi ∈ Π(νi, Pi#γ). By the disintegration
theorem, there exist probability kernels (ηyi )y∈Rdi such that

dηi(xi, y) = dηyi (xi)d(Pi#γ)(y).

For all f positive and measurable function on Rdi × Rdi , it thus holds
ˆ
Rdi×Rdi

f(xi, y) dηi(xi, y) =

ˆ
Rdi

(ˆ
Rdi

f(xi, y) dηyi (xi)

)
d(Pi#γ)(y)

=

ˆ
Rd

(ˆ
Rdi

f(xi, Pi(y)) dη
Pi(y)
i (xi)

)
dγ(y)

=

ˆ
Rd

(ˆ
RD

f(xi, Pi(y)) dη
P1(y)
1 (x1) . . . dη

Pp(y)
p (xp)

)
dγ(y).

Let us then define a probability measure π on RD by setting for all positive measurable
function g on RD

ˆ
RD

g(x) dπ(x) =

ˆ
Rd

(ˆ
RD

g(x) dη
P1(y)
1 (x1) . . . dη

Pp(y)
p (xp)

)
dγ(y).

By construction, π ∈ Π(ν1, . . . , νp). Indeed, for any positive measurable function g on Rdi , it
holds ˆ

RD

g(xi) dπ(x) =

ˆ
Rd

(ˆ
RD

g(xi) dη
P1(y)
1 (x1) . . . dη

Pp(y)
p (xp)

)
dγ(y)

=

ˆ
Rdi×Rdi

g(xi) dηi(xi, y) =

ˆ
Rdi

g(x) dνi(x).
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Finally, for any distribution γ and η1, . . . , ηp in Π(ν1, P1#γ), . . . ,Π(νp, Pp#γ), we have

p∑
i=1

λi

ˆ
Rdi×Rdi

|xi − yi|2 dηi(xi, yi) =

p∑
i=1

λi

ˆ
Rd

(ˆ
RD

|xi − Pi(y)|2) dη
P1(y)
1 (x1) . . . dη

Pp(y)
p (xp)

)
dγ(y)

=

ˆ
Rd×RD

p∑
i=1

λi|xi − Pi(y)|2 dηP1(y)
1 (x1) . . . dη

Pp(y)
p (xp)dγ(y)

≥
ˆ
Rd×RD

p∑
i=1

λi|xi − Pi(Bgen(x)))|2 dηP1(y)
1 (x1) . . . dη

Pp(y)
p (xp)dγ(y)

=

ˆ
Rd

c(x) dπ(x) ≥ (MM).

So we have, for any γ ∈ P2(Rd),
p∑
i=1

λiW
2
2 (νi, Pi#γ) = inf

η1,...,ηp

p∑
i=1

λi

ˆ
Rdi×Rdi

|xi − yi|2 dηi(xi, y) ≥ (MM).

It follows that (GWB) ≥ (MM) and so (GWB) = (MM).
Finally, if π∗ is a solution of (MM), then defining γ∗ = Bgen#π∗, we have

(GWB) ≤
p∑
i=1

λiW
2
2 (νi, Pi#γ

∗) ≤
ˆ
RD

c(x) dπ∗(x) = (MM) = (GWB).

This yields

(GWB) =

p∑
i=1

λiW
2
2 (νi, Pi#γ

∗)

and completes the proof. �

Let us give some insight on a specific case where all the probability measures νi are pro-
jections from the same high dimensional probability measure ν.

Proposition 3.5. Assume that γ is in P2(Rd) and for each i in J1, pK, νi = Pi#γ. Let
P : Rd → Rd1+···+dp be the linear application defined by P (x) = (P1(x), . . . , Pp(x)) ∀x ∈ Rd.
Then π∗ = P#γ is a solution of (MM). If d < D = d1 + · · ·+ dp, then π∗ is supported on a
subspace of dimension d of RD.

Proof. First, observe that the probability measure γ is solution of (GWB). Also, by def-
inition of Bgen, we have for each x ∈ Rd, Bgen(P (x)) = x. If π∗ = P#γ, then clearly
π∗ ∈ Π(ν1, . . . , νp) and we have

ˆ
Rd1+···+dp

p∑
i=1

λi|xi − Pi(Bgen(x)|2 dπ∗(x) = 0,

which means that π∗ = P#γ is a solution of (MM). Since P is linear, and γ lives in Rd, if
D > d then π∗ lives in a subspace of dimension d of RD. �

For instance, as illustrated by Figure 3, for a probability measure ν on the plane (d = 2) and
three linear projections on lines P1, P2, P3, then the solution γ = P#ν of the multimarginal
problem (MM) on R3 will be supported by a plane.
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Figure 3. Left: A-shaped original distribution (in yellow) and three 1D pro-
jections. Center: Solution of the corresponding multimarginal problem (MM)
for these three projections. The solution of the multimarginal problem (MM)
is supported by a plane, as shown in Proposition 3.5. Right: reconstructed
Generalized barycenter (in black).

Proposition 3.4 above clarifies the link between the problems (GWB) and (MM). Since (MM)
can be solved by linear programming, we can derive from this equivalence a way to solve ex-
actly (GWB). To conclude this section, let us show that it is also possible (and somehow
simpler) to relate solutions of (GWB) to the solutions of the classical multimarginal problem
(5) involving the probability measures ν̃1, . . . , ν̃p as in Proposition 3.1.

Proposition 3.6. For all i ∈ J1, pK, let ν̃i = (A−1/2P Ti )#νi. If π∗ ∈ Π(ν̃1, . . . , ν̃p) is such
that ˆ

(Rd)p
|x−B(x)|2 dπ∗(x) = inf

π∈Π(ν̃1,...,ν̃p)

ˆ
|x−B(x)|2 dπ(x),

where B is defined in (3), then γ∗ = A−1/2#(B#π∗) is a solution of (GWB). In other words,
if X1, . . . , Xp are random vectors whose joint distribution is π∗, then the law of

A−1/2

(
p∑
i=1

λiXi

)
is a solution of (GWB).

Proof. This is a straightforward consequence of Proposition 3.1 and Proposition 2.1. �

4. Study of the dual problem

In what follows, if F is a linear subspace of Rn, we will denote by Φ2(F ) the set of continuous
functions f : F → R such that there exists M ≥ 0 such that

|f |(x) ≤M(1 + |x|2), ∀x ∈ F,

where | · | denotes the standard Euclidean norm on Rn. We will also consider the set Φ2,0(Rn)
of continuous functions f : Rn → R such that

f(x)

1 + |x|2
→ 0 when |x| → +∞.

For all i ∈ J1, pK, we will denote by Fi ⊂ Rdi the range of the linear operator Pi : Rd → Rdi
and consider the infimum convolution operator

Sif(x) = inf
y∈Fi

{λi|x− y|2 − f(y)}, x ∈ Rdi
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acting on functions f : Fi → R. Note that Sif is lower semicontinuous on Rdi and that´
Sif(x) dν(x) makes sense in R ∪ {−∞} for any ν ∈ P2(Rdi).

Theorem 4.1. The following duality identity holds
(11)

inf
γ∈P2(Rd)

p∑
i=1

λiW
2
2 (νi, Pi#γ) = sup

{
p∑
i=1

ˆ
Sigi dνi : (g1, . . . , gp) ∈

p∏
i=1

Φ2(Fi),

p∑
i=1

gi ◦ Pi ≥ 0

}
.

Moreover, if at least one of the Fi has dimension d, then
(12)

inf
γ∈P2(Rd)

p∑
i=1

λiW
2
2 (νi, Pi#γ) = sup

{
p∑
i=1

ˆ
Sigi dνi : (g1, . . . , gp) ∈

p∏
i=1

Φ2(Fi),

p∑
i=1

gi ◦ Pi = 0

}
.

Taking d1 = · · · = dp = d and P1 = · · · = Pp = Id, then (12) gives back Agueh and Carlier
dual formulation of the classical Wasserstein barycenter problem (see [2, Proposition 2.2]).
On the other hand, if d1 = · · · = dp−1 = 1, dp = d and Pp = Id, then (12) gives back [1,
Theorem 2.3].

Proof of Theorem 4.1. First let us show how to deduce (12) from (11). Without loss of gen-
erality one can assume that F1 has dimension d. This implies of course that d1 ≥ d and that
P1 : Rd → F1 is a bijection. Take (g1, . . . , gp) ∈

∏p
i=1 Φ2(Fi) such that g :=

∑p
i=1 gi ◦ Pi ≥ 0,

and define ḡ1 = g1 − g ◦ P−1
1 and ḡi = gi for all i ≥ 2. Then, it is clear that (ḡ1, . . . , ḡp) ∈∏p

i=1 Φ2(Fi) and
∑p

i=1 ḡi ◦ Pi = 0. Also, for all x ∈ F1,

S1ḡ1(x) = inf
y∈F1

{λ1|x− y|2 − g1(y) + g(P−1
1 y)} ≥ S1g1(x).

From this follows that the right hand-side of (12) is greater than or equal to the right hand-side
of (11). Since the other inequality is obvious, this completes the proof of (12).

Now, let us prove (11). First note that, if (g1, . . . , gp) ∈
∏p
i=1 Φ2(Fi) are such that∑p

i=1 gi(Pix) ≥ 0 for all x ∈ Rd, then for any γ ∈ P2(Rd), it follows from (the easy sense of)
Kantorovich duality formula that

p∑
i=1

λiW
2
2 (νi, Pi#γ) ≥

p∑
i=1

(ˆ
Sigi dνi +

ˆ
gi(Pi) dγ

)
≥

p∑
i=1

ˆ
Sigi dνi.

So, we get the following bound

inf
γ∈P2(Rd)

p∑
i=1

λiW
2
2 (νi, Pi#γ) ≥ sup

{
p∑
i=1

ˆ
Sigi dνi : (g1, . . . , gp) ∈

p∏
i=1

Φ2(Fi),

p∑
i=1

gi ◦ Pi ≥ 0

}
.

Let us now prove the converse inequality. We consider first the particular case where the
matrix A defined in (7) is invertible. Recall the following identity proved in Proposition 3.1,

F(γ) = C + G(A1/2#γ), ∀γ ∈ P2(Rd),

where C =
∑p

i=1 λi
´
|x|2 − xTPiA−1P Ti xdνi(x). Since A1/2 is invertible, it thus holds

inf
γ∈P2(Rd)

F(γ) = C + inf
µ∈P2(Rd)

G(µ).
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According to the duality result of Agueh and Carlier [2, Proposition 2.2] applied to the

probability measures ν̃i = (A−1/2P Ti )#νi, i ∈ J1, pK, it holds

inf
µ∈P2(Rd)

G(µ) = sup

{
p∑
i=1

ˆ
Sλifidν̃i :

p∑
i=1

fi = 0, f1, . . . , fp ∈ Φ2,0(Rd)

}
,

where, for any λ > 0 and f : Rd → R, we set

Sλf(x) = inf
y∈Rd

{
λ|x− y|2 − f(y)

}
, x ∈ Rd.

Observe that, for all i ∈ J1, pK and fi ∈ Φ2,0(Rd),ˆ
Rd

Sλifidν̃i =

ˆ
Rdi

Sλifi(A
−1/2P Ti x) dνi(x)

and that, for all x ∈ Rdi ,

Sλifi(A
−1/2P Ti x) = inf

y∈Rd
{λi|A−1/2P Ti x− y|2 − f(y)}

= λi(|A−1/2P Ti x|2 − |x|2) + inf
y∈Rd
{λi|x− PiA−1/2y|2 − f̃i(y)}

= λi(|A−1/2P Ti x|2 − |x|2) + inf
z∈Rdi

{λi|x− z|2 − gi(z)},

where

f̃i(y) = λi(|PiA−1/2y|2 − |y|2) + fi(y), y ∈ Rd

and

gi(z) = sup{f̃i(y) : PiA
−1/2y = z}, z ∈ Rdi

with the convention sup ∅ = −∞. Note in particular that gi(z) = −∞ if z /∈ Fi and so

inf
z∈Rdi

{λi|x− z|2 − gi(z)} = Sigi(x), ∀x ∈ Rd

using the same notation gi for the restriction of gi to Fi. Therefore,

inf
γ∈P2(Rd)

F(γ) = sup

{
p∑
i=1

ˆ
Sigidνi :

p∑
i=1

fi = 0, f1, . . . , fp ∈ Φ2,0(Rd)

}
.

Note that
p∑
i=1

gi(Pix) ≥
p∑
i=1

f̃i(A
1/2x) =

p∑
i=1

λi(|Pix|2 − |A1/2x|2) + fi(A
1/2x) = 0.

Lemma 4.1 below shows that for all i ∈ J1, pK, gi ∈ Φ2(Fi). Therefore, we get

inf
γ∈P2(Rd)

F(γ) ≤ sup

{
p∑
i=1

ˆ
Sigi dνi : (g1, . . . , gp) ∈

p∏
i=1

Φ2(Fi),

p∑
i=1

gi ◦ Pi ≥ 0

}
,

which gives (11), in the case the matrix A is assumed to be invertible.
Let us finally consider the case of a general matrix A. According to the discussion at the end
of Section 3.1 and using the notation introduced there, we know that

inf
γ∈P2(Rd)

F(γ) = inf
γ̄∈P2(Rd̄)

F̄(γ̄),
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where d̄ ≤ d and F̄ : P2(Rd̄)→ R+ is defined in (8). By construction, the matrix Ā associated
to the P̄ ′is is invertible. Therefore, using what precedes one concludes that

inf
γ̄∈P2(Rd̄)

F̄(γ̄) ≤ sup

{
p∑
i=1

ˆ
Sigi dνi : (g1, . . . , gp) ∈

p∏
i=1

Φ2(Fi),

p∑
i=1

gi ◦ P̄i ≥ 0

}

= sup

{
p∑
i=1

ˆ
Sigi dνi : (g1, . . . , gp) ∈

p∏
i=1

Φ2(Fi),

p∑
i=1

gi ◦ Pi ≥ 0

}
,

where the second line comes from the fact that g :=
∑p

i=1 gi ◦ Pi ≥ 0 if and only if g is

non-negative on K⊥, where K =
⋂p
i=1 Ker(Pi) = Im(Q) with Q such that P̄i = PiQ, for all

i ∈ J1, pK. This completes the proof. �

Lemma 4.1. Let λ > 0 and f ∈ Φ2,0(Rd) and consider the function

g(z) = λ|z|2 + sup
Ry=z
{f(y)− λ|y|2}, z ∈ F,

where R : Rd → Rm is some linear map and F ⊂ Rm is the image of R. Then g belongs to
Φ2(F ).

Proof. Since f ∈ Φ2,0(Rd), f(y) − λ|y|2 → −∞ as |y| → ∞. Therefore, there exists M1 such

that f(y)− λ|y|2 ≤M1 for all y ∈ Rd. Thus

g(z) ≤ λ|z|2 +M1, ∀z ∈ F.
On the other hand, denote by K the kernel of R and by E a linear subspace such that
K ⊕ E = Rd. The linear map S : E → F : x 7→ Rx is then bijective. Let ‖S−1‖ denote the
operator norm of S−1 : ‖S−1‖ = sup{|S−1z|/|z| : z ∈ F \ {0}}. For all z ∈ F , it then holds

g(z) ≥ λ|z|2 + f(S−1z)− λ|S−1z|2 ≥ −M2(1 + |S−1z|2)− λ|S−1z|2

≥ −M2(1 + ‖S−1‖|z|2)− λ‖S−1‖|z|2,

where M2 = sup{ |f(x)|
1+|x|2 : x ∈ Rd}. Putting everything together shows that |g|

1+| · |2 is bounded

on F . To conclude, let us prove that g is continuous on F . Let zn be some sequence in
F converging to some z ∈ F . The sequence g(zn) is bounded ; define m = infn≥0 g(zn).
Since f(y) − λ|y|2 → −∞ as |y| → ∞, there exists some closed ball B ⊂ Rd such that
f(y) − λ|y|2 < m when y /∈ B. Therefore, the supremum defining g(zn) can be restricted to
B :

g(zn) = λ|zn|2 + sup
Ry=zn,y∈B

{f(y)− λ|y|2}.

Let ` = lim supn→∞ g(zn). Extracting a sequence if necessary, one can assume without loss
of generality that g(zn)→ `. By compactness of B, there exists a sequence yn ∈ B such that
Ryn = zn and

g(zn) = λ|zn|2 + f(yn)− λ|yn|2.
Again, by compactness of B, one can assume without loss of generality that yn converges to
some ȳ ∈ B such that Rȳ = z. Letting n→∞, one concludes that

` = lim sup
n→∞

g(zn) = λ|z|2 + f(ȳ)− λ|ȳ|2 ≤ g(z).

On the other hand, if y∗ ∈ B is such that Ry∗ = z and g(z) = λ|z|2 + f(y∗) − λ|y∗|2, then
defining an = S−1(zn − z), we see that

g(zn) ≥ λ|zn|2 + f(y∗ + an)− λ|y∗ + an|2.
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Since an → 0 as n→∞, we see that

lim inf
n→∞

g(zn) ≥ λ|z|2 + f(y∗)− λ|y∗|2 = g(z) ≥ `.

From this, we conclude that lim infn→∞ g(zn) = lim supn→∞ g(zn) = g(z). This shows the
continuity of g and completes the proof. �

5. Solutions of (GWB) for Gaussian distributions

In this section, we consider the case where ν1, . . . , νp are Gaussian distributions and we
show below that the generalized Wasserstein barycenter can also be a Gaussian distribution,
and how its parameters can be computed in practice.

First let us see how to obtain the expectation of the barycenter. Recall that the quadratic
transport cost between two distributions η and η′ can be written

W 2
2 (η, η′) = |E[η]− E[η′]|2 +W 2

2

(
η − E[η], η′ − E[η′]

)
.

This implies that if γ is solution of (GWB) for the probability measures ν1, . . . , νp and weights
λ1, . . . , λp, then

E[γ] = inf
x

∑
i

λi|Pi(x)− µi|2 = Bgen(m1, . . . ,mp),

where m1, . . . ,mp denote the expectations of the measures ν1, . . . , νp.
For this reason, we will assume in all the section that ν1, . . . , νp are centered Gaussian

distributions.

5.1. Existence and characterization of Gaussian solutions of (GWB) for Gaussian
distributions. In this section, we assume that the matrix A defined in (7) is invertible.

Proposition 5.1. If ν1, . . . , νp are centered Gaussian probability measures, then (GWB) ad-
mits at least one centered Gaussian solution.

Proof. According to Proposition 3.1, it is enough to show that the functional G admits at least
a Gaussian minimizer µ∗. Note that the probability measures ν̃i are (in general degenerate)
Gaussian measures as linear transformations of Gaussian measures. To apply Agueh and
Carlier results (who consider only non degenerate Gaussian distribution), let us add a small
noise to regularize the ν̃i. For all i ∈ J1, pK, let us thus consider ν̃i,n = Law(Xi + 1

nZ), n ≥ 1,
where Xi ∼ ν̃i and Z is a standard Gaussian random vector independent of the Xi’s. The
probability measures ν̃1,n, . . . , ν̃p,n are Gaussian and absolutely continuous. According to [2,
Theorem 6.1], the function

Gn(µ) =

p∑
i=1

λiW
2
2 (ν̃i,n, µ), µ ∈ P2(Rd)

attains its minimum at a unique point µn, which is a Gaussian probability measure. Fix
some measure νo ∈ P2(Rd). Since ν̃i,n → ν̃i as n → ∞ for the W2 metric, one sees that
Gn(νo)→ G(νo). In particular, M := supn≥1 Gn(νo) < +∞. Since µn is optimal, one gets that
Gn(µn) ≤M for all n ≥ 1. Asˆ

|x|2 dµn(x) ≤ 2W 2
2 (ν̃i,n, µn) + 2

ˆ
|x|2 dν̃i,n

one deduces thatˆ
|x|2 dµn(x) ≤ 2Gn(µn) + 2

p∑
i=1

λi

ˆ
|x|2 dν̃i,n ≤ 2(M +M ′)
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where M ′ = sup1≤i≤p supn≥1

´
|x|2 dν̃i,n. In particular, we see that the sequence (µn)n≥1 is

tight. Therefore, according to Prokhorov theorem, one can find a sub-sequence n′ →∞ such
that µn′ → µ∗, as n′ → ∞. Since µ∗ is a limit of Gaussian measures, it is itself Gaussian.
Finally, let us show that µ∗ is optimal. For any µ it holds

p∑
i=1

λiW
2
2 (ν̃i,n′ , µn′) ≤

p∑
i=1

λiW
2
2 (ν̃i,n′ , µ)

so, letting n′ →∞, it follows from the lower semicontinuity of W2 that
p∑
i=1

λiW
2
2 (ν̃i, µ

∗) ≤
p∑
i=1

λiW
2
2 (ν̃i, µ)

this completes the proof. �

Proposition 5.2. If for all i ∈ J1, pK, νi is a centered Gaussian probability measure on Rdi
with covariance matrix Si, then the (GWB) admits at least one centered Gaussian solution
γ∗ whose covariance matrix S satisfies the equation

(13) A1/2SA1/2 =

p∑
i=1

λi

(
(A1/2SA1/2)1/2A−1/2(P Ti SiPi)A

−1/2(A1/2SA1/2)1/2
)1/2

.

If S is invertible, it also satisfies the following equations

(14) S1/2AS1/2 =

p∑
i=1

λi(S
1/2P Ti SiPiS

1/2)1/2

and

(15) S1/2 = A−1/2

(
A1/2

p∑
i=1

λi(S
1/2P Ti SiPiS

1/2)1/2A1/2

)1/2

A−1/2.

Proof. Let us follow the proof of the preceding result and denote by K̃i,n andKn the covariance
matrices of ν̃i,n′ and µn′ (converging subsequences). According to [2, Theorem 6.1], it holds

Kn =

p∑
i=1

λi

(
K1/2
n (K̃i,n)K1/2

n

)1/2
.

Denoting by K the covariance matrix of µ∗ and K̃i the covariance matrix of ν̃i, i ∈ J1, pK,
one knows that Kn → K and K̃i,n → K̃i = A−1/2P Ti SiPiA

−1/2. Since the map M 7→M1/2 is
continuous on the space of semi-definite symmetric matrices, one concludes that K satisfies
the equation

K =

p∑
i=1

λi

(
K1/2(K̃i)K

1/2
)1/2

.

Since S = A−1/2KA−1/2, one gets

S =

p∑
i=1

λiA
−1/2

(
(A1/2SA1/2)1/2(A−1/2P Ti SiPiA

−1/2)(A1/2SA1/2)1/2
)1/2

A−1/2

which completes the proof of (13).
Now, observe that if S is invertible, the linear maps

(16) Ti = A−1/2S−1/2(S1/2P Ti SiPiS
1/2)1/2S−1/2A−1/2
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and
(17)

Ri = (A1/2SA1/2)−1/2
(

(A1/2SA1/2)1/2A−1/2(P Ti SiPi)A
−1/2(A1/2SA1/2)1/2

)1/2
(A1/2SA1/2)−1/2

are both positive semi-definite and such that TiKTi = RiKRi = K̃i. Using Lemma 5.1, we
deduce that Ti = Ri. Equation (14) is then equivalent to Equation (13), replacing Ri by Ti in
the equation. Equation (15) is a direct consequence of Lemma 5.1 applied to Equation (14).

�

Lemma 5.1. Let M1 and M2 be two symmetric matrices of the same size, with M1 positive
definite and M2 positive semi-definite. Then, the unique positive semi-definite solution of
XM1X = M2 is

X = M
− 1

2
1 (M

1
2

1 M2M
1
2

1 )
1
2M

− 1
2

1 .

Proof. Since M1 is positive definite, we can write X = M
− 1

2
1 YM

− 1
2

1 , with Y positive semi-

definite, and thus Y Y = M
1
2

1 M2M
1
2

1 , which is positive semi-definite. This matrix has a unique

positive semi-definite square root Y = (M
1
2

1 M2M
1
2

1 )
1
2 . �

5.2. Local minimizers. In this section, we assume that the matrix A defined in (7) is
invertible and we show an optimality result for Gaussian measures whose covariance matrix
satisfies (13). In particular, if this covariance matrix is also invertible, the measure will be
solution of (GWB).

We will need the following lemma

Lemma 5.2. Let M be a d× d matrix, then

(18)
1

2
uT (MTM)1/2u+

1

2
vT (MMT )1/2v ≥ utMT v, ∀u, v ∈ Rd.

Proof. Since (MMT )1/2 is symmetric, it is a bijection from Im((MMT )1/2) = Ker((MMT )1/2)⊥

into itself. Note that by construction of the square root of a symmetric semi definite matrix
it holds Ker((MMT )1/2) = Ker(MMT ). Furthermore,

x ∈ Ker(MMT )⇔ xtMMTx = 0⇔ |MTx| = 0⇔ x ∈ Ker(MT ) = Im(M)⊥.

Therefore, Im((MMT )1/2) = Im(M).

Now, fix some u ∈ Rd and consider the function f(v) = utMT v− 1
2v

T (MMT )1/2v, v ∈ Rd.
Then

∇f(v) = Mu− (MMT )1/2v = 0⇔ v = (MMT )−1/2Mu.

Since f is convex, one concludes that

sup
v∈Rd

f(v) = f((MMT )−1/2Mu) =
1

2
uTMT (MMT )−1/2Mu.

Finally, note that

MT (MMT )−1/2MMT (MMT )−1/2M = MTM

and so MT (MMT )−1/2M = (MTM)1/2 and supv∈Rd f(v) = 1
2u

T (MTM)1/2u, which com-
pletes the proof. �
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Remark 5.1. Note that one can alternatively prove (18) first in the case where M is invertible

(in this case (MMT )1/2 is also invertible) and then extend the validity of the inequality to
general matrices by approximation.

Proposition 5.3. For all i ∈ J1, pK, let νi be a centered Gaussian probability measure on Rdi
with covariance matrix Si, and let γ∗ be a centered Gaussian probability measure on Rd with
a covariance matrix S satisfying Equation (13). Then γ∗ minimizes F over the class of all
probability measures γ ∈ P2(Rd) such that γ(F ) = 1, where F denotes the support of γ∗. In
particular, if S is an invertible solution of Equation (13) (or equivalently of Equation (14)),
then γ∗ is a solution of (GWB).

Proof. For all i ∈ J1, pK, write Ki = A−1/2P Ti SiPiA
−1/2 for the covariance matrices of ν̃i and

denote by µ∗ the Gaussian measure with covariance matrix K = A1/2SA1/2. By assumptions,
the positive semi definite matrices K and Ki are related by the identity

(19) K =

p∑
i=1

λi(K
1/2KiK

1/2)1/2.

The support of µ∗ is Im(K). It is enough to show that µ∗ minimizes G over the set of probability
measures µ ∈ P2(Rd) such that µ(Im(K)) = 1.

According to the classical formula for the Wasserstein distance between two Gaussian dis-
tributions [13], it holds

W 2
2 (µ∗, ν̃i) = Tr(K) + Tr(Ki)− 2Tr

((
K1/2KiK

1/2
)1/2

)
.

Recall in particular, that Tr
((
K1/2KiK

1/2
)1/2)

= Tr

((
K

1/2
i KK

1/2
i

)1/2
)

, by symmetry of

the Wasserstein distance. Therefore, using (19) one gets

p∑
i=1

λiW
2
2 (µ∗, ν̃i) =

p∑
i=1

λiTr(Ki)− Tr (K) .

Now let us construct a couple of Kantorovich potentials between µ∗ and ν̃i, for all i ∈ J1, pK.
For all i ∈ J1, pK, define the quadratic forms

qi(u) =
1

2
uT (K1/2KiK

1/2)1/2u, u ∈ Rd and ri(v) =
1

2
vT (K

1/2
i KK

1/2
i )1/2v, v ∈ Rd.

Note that K−1/2 and K
−1/2
i are well defined on Im(K) and Im(Ki) respectively. Therefore,

for all i ∈ J1, pK, the functions

φi(x) = qi(K
−1/2x), x ∈ Im(K) and ψi(y) = ri(K

−1/2
i y), y ∈ Im(Ki)

are also well defined. We claim that (φi, ψi) is a couple of Kantorovich potentials for µ∗ and

ν̃i. First note that applying (18) with M = K
1/2
i K1/2, u = K−1/2x and v = K

−1/2
i y yields to

(20) φi(x) + ψi(y) ≥ x · y, ∀x ∈ Im(K),∀y ∈ Im(Ki).

Moreover, if u1, . . . , uk is an orthonormal basis of Im(K), and Z1, . . . , Zk independent standard

Gaussians, then µ∗ = Law(K1/2
∑k

i=1 Ziui). Therefore,

ˆ
φi(x) dµ∗(x) = E

[
φi

(
K1/2(

k∑
i=1

Ziui)

)]
= E

[
qi(

k∑
i=1

Ziui)

]
.
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Let k = dim(Im(K)) ; note that (K1/2KiK
1/2)1/2 leaves stable Im(K) and vanishes on

Ker(K). Let us choose u1, . . . , uk as an orthonormal basis of eigenvectors of the restriction

of (K1/2KiK
1/2)1/2 to Im(K), and denote by α1, . . . , αk ≥ 0 the corresponding eigenvalues.

Then it holds

E

[
qi(

k∑
i=1

Ziui)

]
=

1

2
E

[
k∑
i=1

αiZ
2
i

]
=

1

2

k∑
i=1

αi =
1

2
Tr((K1/2KiK

1/2)1/2).

Thus ˆ
φi(x) dµ∗(x) =

1

2
Tr((K1/2KiK

1/2)1/2)

and similarly,ˆ
ψi(y) dν̃i(y) =

1

2
Tr((K

1/2
i KK

1/2
i )1/2) =

1

2
Tr((K1/2KiK

1/2)1/2).

This shows that

(21)

ˆ
|x|2

2
− φi(x) dµ∗(x) +

ˆ
|y|2

2
− ψi(y) dν̃i(y) =

1

2
Tr(K) +

1

2
Tr(Ki)− Tr

((
K1/2KiK

1/2
)1/2

)
=

1

2
W 2

2 (µ∗, ν̃i).

According to (20) and (21), (φi, ψi) is a pair of Kantorovich potentials between µ∗ and ν̃i.
Now, let µ ∈ P2(Rd), be such that µ(Im(K)) = 1. For all i ∈ J1, pK, the inequality

|x− y|2

2
≥ |x|

2

2
− φi(x) +

|y|2

2
− ψi(y), x ∈ Im(K), y ∈ Im(Ki)

(which follows from (20)) gives after integration that

W 2
2 (µ, ν̃i)

2
≥
ˆ

Im(K)

(
|x|2

2
− φi(x)

)
dµ(x) +

ˆ
Im(Ki)

(
|y|2

2
− ψi(y)

)
dν̃i(y).

Summing over i,

1

2

p∑
i=1

λiW
2
2 (µ, ν̃i) ≥

p∑
i=1

λi

ˆ
Im(K)

(
|x|2

2
− φi(x)

)
dµ(x) +

p∑
i=1

λi

ˆ
Im(Ki)

(
|y|2

2
− ψi(y)

)
dν̃i(y)

=

p∑
i=1

λi

ˆ
Im(Ki)

(
|y|2

2
− ψi(y)

)
dν̃i(y)

=

p∑
i=1

λiTr(Ki)− Tr (K)

=
1

2

p∑
i=1

λiW
2
2 (µ∗, ν̃i),

where the second line comes from the fact that
∑p

i=1 λiφi(x) = |x|2
2 , x ∈ Im(K), as easily

follows from (19). This completes the proof. �
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5.3. Discussion of the uniqueness question in the Gaussian case.

5.3.1. A simple example of non-uniqueness. Consider ν1 = ν2 = N (0, 1), P1 : R2 → R :
(x, y) 7→ x and P2 : R2 → R : (x, y) 7→ y and (say) λ1 = λ2 = 1/2. Then

P1 = [1 0], P2 = [0 1], A = λ1P
T
1 P1 + λ2P

T
2 P2 =

1

2

[
1 0
0 1

]
and ν̃1 = N

(
0,

[
2 0
0 0

])
and ν̃2 = N

(
0,

[
0 0
0 2

])
. In other words, denoting by (e1, e2)

the standard basis of R2, one has ν̃i = Law(
√

2Zei), where Z is a standard Gaussian random
variable.

Fact 1. Any coupling between ν̃1 and ν̃2 is optimal.
Indeed, if (X1, X2) is a coupling between ν̃1 and ν̃2, then X1 and X2 are almost surely
orthogonal vectors of R2 and so X1 ·X2 = 0 a.s. Therefore,

E[|X1 −X2|2] = E[|X1|2] + E[|X2|2] = 4.

Thus W 2
2 (ν̃1, ν̃2) = 4 and all couplings are optimal.

Fact 2. The class of Wasserstein barycenters of ν̃1 and ν̃2 for λ1 = λ2 = 1/2 consists in
all probability distributions of the form : Law

(
1
2X1 + 1

2X2

)
, where (X1, X2) is an arbitrary

coupling between ν̃1 and ν̃2.
Indeed, it is easily checked that if (X1, X2) is a coupling between ν̃1 and ν̃2, then for i = 1, 2

E

[∣∣∣∣Xi −
(

1

2
X1 +

1

2
X2

)∣∣∣∣2
]

=
1

4
E[|X1 −X2|2] = 1

and so, denoting by ν̃1.5 = Law
(

1
2X1 + 1

2X2

)
, it holds

1

2
W 2

2 (ν̃1, ν̃1.5) +
1

2
W 2

2 (ν̃1.5, ν̃2) ≤ 1.

Moreover, since (a+ b)2 ≤ 2(a2 + b2), for any ν̃ ∈ P2(R2) it always holds

1

2
W 2

2 (ν̃1, ν̃) +
1

2
W 2

2 (ν̃, ν̃2) ≥ 1

4
W 2

2 (ν̃1, ν̃2) = 1.

This shows that ν̃1.5 is a Wasserstein barycenters of ν̃1 and ν̃2.

Fact 3. Among the Gaussian generalized barycenters of ν1 and ν2, some have densities and
some don’t.
Indeed, for any α ∈ [−1, 1], choosing X1 =

√
2Z1e1, X2 =

√
2Z2e2 with Z = (Z1, Z2) a

centered two dimensional Gaussian random vector with covariance matrix Kα = 2Sα, where

Sα =

[
1 α
α 1

]
gives

ν̃1.5 = Law

(
e1Z1 + e2Z2

2

)
= N (0, Sα/2) ,

which yields to the following solution of (GWB)

γ∗α = N (0, Sα).

Note that Sα is invertible only when α ∈ (−1, 1). In particular, the equation (13) has infinitely
many solutions.
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Fact 4. In this example, Equation (13) reads as follows

(22) S =
(
S1/2A1S

1/2
)1/2

+
(
S1/2A2S

1/2
)1/2

,

denoting A1 =

[
1 0
0 0

]
and A2 =

[
0 0
0 1

]
. One can easily check that S = A1 is solution of

(22). Though A1 is solution of the fixed point equation, the Gaussian measure with covariance
matrix A1 is not a solution of (GWB).

5.3.2. Conditions for uniqueness of the Gaussian solution. The following proposition charac-
terizes the sets of matrices {Pi}i∈J1,pK which ensure the uniqueness of the Gaussian solution.

Proposition 5.4. For all i ∈ J1, pK, let (uki )1≤k≤di be the set of columns of the matrix P Ti .

For i ∈ J1, pK and k,m ∈ J1, diK, define the symmetric matrix Ck,mi = (uki )(u
m
i )T +(umi )(uki )

T .
Assume that the νi, 1 ≤ i ≤ p are all non degenerate centered Gaussian probability measures.
Then (GWB) has a unique centered Gaussian solution if and only if the linear span of the

family {Ck,mi } i∈J1,pK
k,m∈J1,diK

is the set of symmetric matrices on Rd.

Proof. According to Proposition 3.3, two Gaussian solutions γ1 and γ2 of (GWB) are such
that Pi#γ1 = Pi#γ2 for each i. These solutions are equal if and only the set of equations
PiSP

T
i = Si entirely characterizes the covariance matrix S. Now, each of these equations can

be rewritten as

(uki )
TS(umi ) = Si(k,m), ∀k,m ∈ J1, diK.

The left terms of these equations can be seen as scalar products between S and the matrices

Ck,mi (seeing matrices as vectors)

〈Ck,mi , S〉 = 2Si(k,m), ∀k,m ∈ J1, diK.

This set of equations entirely characterizes S if and only if the set of {Ck,mi } spans the

symmetric matrices of Rd. �

The following result is a direct consequence of what precedes.

Corollary 5.1. Let u1, . . . , ud be a basis of Rd and consider the linear maps Pi,j : R → R :
x 7→ x·(ui+uj) for 1 ≤ i ≤ j ≤ d. If νi,j, 1 ≤ i ≤ j ≤ d, is a family of non degenerate centered
Gaussian probability measures on R, then for any family of positive weights λi,j, 1 ≤ i ≤ j ≤ d
summing to 1, the corresponding minimization problem (GWB) (with p = d(d+ 1)/2) admits
a unique centered Gaussian solution.

5.4. Iterative scheme to compute the Gaussian solution. In order to compute nu-
merically the solution of the Gaussian problem, we can implement the strategy proposed
in [4] for Gaussian barycenters. The main difference is that none of the Gaussian measures

ν̃i = A−1/2P Ti #N (0, Si) is full rank, which means that the main results of [4] do not apply
directly. We show in the following how they can be adapted.

Proposition 5.5. Assume that for each 1 ≤ i ≤ p, Si is a di× di symmetric positive definite
matrix, and write K̃i = A−1/2(P Ti SiPi)A

−1/2. For some d × d definite positive symmetric
matrix K0, define the sequence

(23) Kn+1 = K−1/2
n

(
p∑
i=1

λi(K
1/2
n K̃iK

1/2
n )

)2

K−1/2
n , n ≥ 0.
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For all d× d symmetric non-negative definite matrix M , write 1

(24) G(M) =

p∑
i=1

λiW
2
2 (N (0, K̃i),N (0,M)).

The iterative scheme (23) defines a sequence of positive definite matrices Kn such that G(Kn)
decreases with n. Moreover, there exists a subsequence (Knl

)n≥0 converging to a positive semi-

definite matrix K and S = A−1/2KA−1/2 satisfies Equation (13). If K is positive definite,
then N (0, S) is a solution of (GWB). Furthermore, if the hypotheses of Proposition 5.4 are
satisfied, then K is the unique solution of (GWB).

Proof. For any d× d positive definite symmetric matrix K, define

L(K) = K−1/2

(
p∑
i=1

λi(K
1/2K̃iK

1/2)1/2

)2

K−1/2.

Observe that L(K) is still symmetric and positive semidefinite. Since all matrices Si are
positive definite, we can find α > 0 such that Si ≥ αId for all i. It follows that

αId = α

p∑
i=1

λiA
−1/2P Ti PiA

−1/2 ≤
p∑
i=1

λiA
−1/2P Ti SiPiA

−1/2 =

p∑
i=1

λiK̃i.

Thus,
∑p

i=1 λiK̃i is invertible and so is
∑p

i=1 λiK
1/2K̃iK

1/2. Now, choose δ such that

K1/2K̃iK
1/2 ≤ δId for all i. Clearly,

p∑
i=1

λi(K
1/2K̃iK

1/2)1/2 ≥ 1√
δ

p∑
i=1

λi(K
1/2K̃iK

1/2)

so
∑p

i=1 λi(K
1/2K̃iK

1/2)1/2 remains full rank and so is L(K). It follows that the iterative
scheme (23) is well defined and generates a sequence of positive definite symmetric matrices.

Now, let (Kn)n≥0 be such a sequence. Since Kn is invertible and Kn+1 = L(Kn), using
Proposition 3.3 in [4], we have

G(Kn)− G(Kn+1) ≥W 2
2 (N (0,Kn),N (0,Kn+1)).

The sequence (G(Kn))n≥0 is thus positive and decreasing, and so it converges in R+. This

implies in particular that W2(N (0,Kn),N (0,Kn+1))
n→∞−→ 0. Since (G(Kn))n≥0 converges,

we can easily deduce that N (0,Kn) is tight (using the same argument as in the proof of
Proposition 5.1) and that the sequence of covariances (Kn)n≥0 is bounded and thus has a
subsequence (Knl

)l≥0 which converges to a symmetric matrix K. This matrix K is positive
semidefinite but might not be full rank. It follows that the sequence N (0,Knl

) converges
in the space of Gaussian measures on Rd equipped with the Wasserstein metric W2 towards
N (0,K). Now,

W2(N (0,Knl+1),N (0,K)) ≤W2(N (0,Knl+1),N (0,Knl
)) +W2(N (0,Knl

),N (0,K))
n→∞−→ 0,

so (Knl+1)l≥0 also converges to K. Since Knl+1 = L(Knl
), we have (K

1/2
nl Knl+1K

1/2
nl )1/2 =∑p

i=1 λi(K
1/2
nl K̃iK

1/2
nl )1/2 and by continuity of both terms it follows that

K =

p∑
i=1

λi(K
1/2K̃iK

1/2)1/2

1For the sake of simplicity, we re-use the notation G here as a function of the symmetric non-negative
definite matrix M instead of a function of the measure N (0,M) as defined in Section 3.2.
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which means that S = A−1/2KA−1/2 is a solution of Equation (13). We deduce that N (0,K)
is a local minimizer of (GWB), as defined in Proposition 5.3, and that if K is full rank,
N (0,K) is a solution of (GWB). �

6. Experiments

This section gathers experiments illustrating the behavior of the generalized Wasserstein
barycenters. We start by explaining how we can numerically compute solutions of (GWB),
using either linear programming to compute the exact solution, or the Sinkhorn algorithm
to compute an approximation of the solution. We then present several results of generalized
barycenters between disagreeing projections in 2 or 3 dimensions, illustrating how solutions
find a compromise between several distributions which do not coincide on their common
subspaces. The section concludes with experiments on Gaussian distributions.

6.1. Computing numerical solutions of (GWB). To solve (GWB) between empirical dis-
tributions νi (i.e. distributions which can be written as linear combinations of Dirac masses),
several strategies are possible. As described in Section 3.2, a probability measure γ∗ mini-
mizes F for the measures νi if and only if A1/2#γ∗ minimizes G (see equation (10)) between

the measures ν̃i = (A−1/2P Ti )#νi. Thus, any classical Wasserstein barycenter algorithm can
be used to minimize G and deduce solutions for (GWB).

When p = 2, the solution can be directly deduced from an optimal plan (for W2) π∗ between
ν̃0 and ν̃1. Indeed, if we define

∀x, y ∈ Rd, Pt(x, y) = (1− t)x+ ty,

then for any t ∈ [0, 1], the probability measure ν̃t := Pt#π
∗ is a barycenter between ν̃0 and

ν̃1 for the weights (1− t, t), i.e.

νt ∈ arg min
ρ

(1− t)W 2
2 (ν̃0, ρ) + tW 2

2 (ν̃1, ρ).

To compute this optimal plan, we can use any exact or approximate dedicated algorithm, as
illustrated by Figure 4.

When p ≥ 3, a first possibility is to solve the multimarginal problem (MM) in order to
deduce a generalized barycenter using Proposition 3.4, as seen in Section 3.4. This is possible
(although computationally heavy) with any standard linear programming solver if we want to
compute the exact solution of the generalized barycenter problem. A faster alternative is to
solve the regularized version of this multi-marginal problem with the Sinkhorn algorithm, as
described in Section 4.1 of [7]. These approaches using the multimarginal formulation permit
to compute the solution of (GWB) when the supports of the distributions ν̃i are not fixed.
They minimize G with respect to both the support and the mass of the distribution. However,
their computational cost become prohibitive when the number of marginals increases and they
are therefore limited to a small number of marginals.

A solution which scales much better with the number of marginals but still belongs to
the class of free support approaches is to find a barycenter with a given number of masses,
optimizing on the mass locations but not on the weights, as described in [9]. This solution
provides a fast and convenient way to compute an approximate solution of (GWB) when
the number of marginals and the number of points in the original measures νi increase.
Figure 5 shows on an example the solutions provided respectively by this approach and by the
multimarginal Sinkhorn. Since the solution provided by Sinkhorn contains mass everywhere,
it is thresholded to obtain the displayed set of points. The two solutions present similar
3d shapes, although the Sinkhorn solution has a more regular dot pattern, due to the way
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Figure 4. Generalized Wasserstein Barycenter (in blue) between two

marginals (black ’H’ shape and orange circle) ν1 and ν2, with P1 =

(
1 0 0
0 1 0

)
and P2 =

(
0 1 0
0 0 1

)
. Left: solution given by solving directly the optimal

transport problem between ν̃1 and ν̃2. Right: approximate solution given by
solving the regularized version of the same problem with Sinkhorn algorithm.
The resulting solution is thresholded to obtain the displayed set of points.

it is computed. In practice, optimizing only on the mass locations is much faster than the
multimarginal strategy.

Finally, for distributions with a known and fixed support (for instance an image grid),
iterative Bregman projections that optimize only weights can be used, as described in Section
3.3 of [8].

6.2. Generalized barycenters between disagreeing marginals. An interesting aspect
of generalized barycenters lies in the way they compromise between disagreeing marginals.
Figures 6 and 7 illustrate this behavior on several examples between different sets of disagree-
ing marginals. In these experiments, the solution is computed thanks to the multimarginal
Sinkhorn algorithm and projected back thanks to Proposition 3.4. For each figure, we show
on the left the barycenter ν (black dots) between the original two dimensional distributions νi
(colored dots, each color corresponding to a different i). On the right, we show for each i the
superposition of Pi#ν (black) and νi. For instance, in first experiment, the red square is nar-
rower than the blue heart in their common dimension, and the barycenter has to compromise
between these two shapes on this dimension.

A last example with three point distributions, representing different superheros, is shown
on Figure 8. The solution is computed here by fixing the number of points to 2000 and
optimizing only on their locations, since the number of points in each νi is too large for the
multimarginal to run in a reasonable time on a laptop.
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Figure 5. Generalized Wasserstein Barycenter (in blue) between three
marginals (green square, black circle and orange ’H’ shape) ν1, ν2 and ν3,

with P1 =

(
1 0 0
0 1 0

)
, P2 =

(
0 1 0
0 0 1

)
and P3 =

(
1 0 0
0 0 1

)
. Left: barycen-

ter with a fixed number of masses, obtained by optimizing the mass locations
but not the weights, as described in [9]. Right: approximate solution given by
solving (MM) with the multimarginal Sinkhorn algorithm and projecting back
to find γ∗ thanks to Proposition 3.4 (the resulting solution is thresholded to
obtain the displayed set of points).

6.3. Generalized Gaussian barycenters.

6.3.1. Gaussian measures. We have shown in Section 5 how to solve GWB for Gaussian mea-
sures. We have also proven that for such measures, a finite number of Pi (see Proposition 5.4)
is needed to reconstruct the Gaussian perfectly from all the Pi#νi.

We illustrate this property on Figure 9, which shows the reconstruction of a Gaussian
measure in 2 dimensions from its three projections on the 3 axes (1, 0), (0, 1) and ( 1√

2
, 1√

2
),

using the iterative scheme of Section 5.4 to reconstruct the covariance matrix. As predicted
by Proposition 5.4, the Gaussian measure can be reconstructed perfectly from these three
projections. The same experiment can be conducted by adding noise to the projections (on
the mean and the standard deviation for instance). In this case, using more projections
increases the robustness of the reconstruction.

6.3.2. Gaussian mixtures. In [11], a distance between Gaussian mixtures on Euclidean spaces
is defined by restricting the set of possible coupling measures in the optimal transport problem
to Gaussian mixtures. More precisely, if ν1 and ν2 are two Gaussian mixtures on Rd, the
distance is defined as

(25) MW 2
2 (ν1, ν2) := inf

π∈Π(ν1,ν2)∩GMM2d(∞)

ˆ
Rd×Rd

|x2 − x1|2 dπ(x1, x2),
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where GMM2d(∞) is the set of all finite Gaussian mixtures on R2d. A simple discrete formu-
lation is derived for this distance, which makes it suitable for problems with massive data, as
long as these data are well represented by Gaussian mixtures. Barycenters between Gaussian
mixtures can be defined for this distance and can be deduced from a corresponding multi-
marginal problem, as detailed in [11]. This formulation ensures that barycenters between
Gaussian mixtures remain Gaussian mixtures themselves, which is not the case with classical
optimal transport.

We can use this framework to define generalized barycenters between Gaussian mixtures
by replacing W 2

2 by MW 2
2 in (GWB). This makes sense since the Pi are linear, which means

that for any Gaussian mixture γ, all the Pi#γ remain Gaussian mixtures. More precisely, for
p Gaussian mixtures ν1, ν2, . . . νp on their respective subspaces Rdi , the problem becomes

(26) inf
γ∈P2(Rd)∩GMMd(∞)

p∑
i=1

λiMW 2
2 (νi, Pi#γ).

The reformulation described in Section 3.2 remains valid. Indeed, for two Gaussian mixtures
ν and γ, and any linear application T , the equality of Lemma 3.3 still holds if we restrict
the plans π to belong to Gaussian mixtures. As a consequence, we can use the algorithms
described in [11] to compute barycenters between Gaussian mixtures in order to solve (26).

We implemented this approach on a toy example shown on Figure 10. In this example, a
2D Gaussian mixture γ is projected on three different axes (1, 0), (0, 1) and ( 1√

2
, 1√

2
), giving

three 1D Gaussian mixtures νi. The corresponding ν̃i = A−1/2P Ti #νi are computed and the
problem

(27) inf
µ∈P2(Rd)∩GMMd(∞)

p∑
i=1

λiMW 2
2 (ν̃i, µ)

is solved in order to reconstruct the original Gaussian mixture γ.
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[26] Frank Natterer and Frank Wübbeling. Mathematical methods in image reconstruction.
SIAM, 2001.
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(a) (b)

(c) (d)

Figure 6. Generalized barycenters between disagreeing 2d distributions.
Each line corresponds to an experiment. On the left, the three dimensional
berycenter ν (black dots) between the original two dimensional distributions
νi (colored dots, each color corresponding to a different i). On the right, for
each i, we show the superposition of Pi#ν (black) and νi.
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(a) (b)

(c) (d)

Figure 7. Generalized barycenters between disagreeing 2d distributions.
Each line corresponds to an experiment. On the left, the three dimensional
berycenter ν (black dots) between the original two dimensional distributions
νi (colored dots, each color corresponding to a different i). On the right, for
each i, we show the superposition of Pi#ν (black) and νi.
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Figure 8. Generalized Wasserstein Barycenter (in blue) between three dots
distributions representing logos of super heros (Captain America in black,

Scarlet Witch in green and Spiderman in orange), with P1 =

(
1 0 0
0 1 0

)
,

P2 =

(
0 1 0
0 0 1

)
and P3 =

(
1 0 0
0 0 1

)
. Top: three marginals and generalized

barycenter with a fixed number of masses (2000 points here), obtained by op-
timizing the mass locations but not the weights, as described in [9]. Bottom:
projections Pi#γ

∗ of the generalized barycenter superposed with the νi.
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Figure 9. On the left, three one dimensional Gaussian measures obtained by
projecting the two dimensional Gaussian measure centered at (0.5, 0.5) with

covariance matrix

(
0.06 0.05
0.05 0.05

)
on the three axes (1, 0), (0, 1) and ( 1√

2
, 1√

2
).

Some level lines of the 2D Gaussian measure are also displayed on the fig-
ure. On the right, we show the convergence of the different coefficients of the
covariance matrix reconstructed from these three projections, using the iter-
ative scheme of Section 5.4 to reconstruct the covariance matrix. Each curve
represent the absolute difference between a coefficient of the reconstructed co-
variance matrix and the same coefficient in the original covariance.

Figure 10. On the left, level lines of a mixture of 12 Gaussians, and projec-
tions on the three axes (1, 0), (0, 1) and ( 1√

2
, 1√

2
). On the right, we reconstruct

the 2D Gaussian mixture from the simple knowledge of these three one dimen-
sional GMM.


