LNetReduce: tool for reducing linear dynamic networks with separated time scales - Archive ouverte HAL
Communication Dans Un Congrès Année : 2021

LNetReduce: tool for reducing linear dynamic networks with separated time scales

Marion Buffard
  • Fonction : Auteur
Aurélien Desoeuvres
  • Fonction : Auteur
Clément Requilé
  • Fonction : Auteur
Andrei Zinovyev
Ovidiu Radulescu

Résumé

We introduce LNetReduce, a tool that simplifies linear dynamic networks. Dynamic networks are represented as digraphs labeled by integer timescale orders. Such models describe deterministic or stochastic monomolecular chemical reaction networks, but also random walks on weighted protein-protein interaction networks, spreading of infectious diseases and opinion in social networks, communication in computer networks. The reduced network is obtained by graph and label rewriting rules and reproduces the full network dynamics with good approximation at all time scales. The tool is implemented in Python with a graphical user interface. We discuss applications of LNetReduce to network design and to the study of the fundamental relation between time scales and topology in complex dynamic networks.
Fichier principal
Vignette du fichier
2021.05.11.443578v1.full.pdf (3.01 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03226633 , version 1 (14-05-2021)

Identifiants

Citer

Marion Buffard, Aurélien Desoeuvres, Aurélien Naldi, Clément Requilé, Andrei Zinovyev, et al.. LNetReduce: tool for reducing linear dynamic networks with separated time scales. Computational Methods in Systems Biology, Sep 2021, Bordeaux, France. ⟨10.1007/978-3-030-85633-5_15⟩. ⟨hal-03226633⟩
121 Consultations
69 Téléchargements

Altmetric

Partager

More