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Abstract. We introduce LNetReduce, a tool that simplifies linear dy-
namic networks. Dynamic networks are represented as digraphs la-
beled by integer timescale orders. Such models describe deterministic
or stochastic monomolecular chemical reaction networks, but also ran-
dom walks on weighted protein-protein interaction networks, spreading
of infectious diseases and opinion in social networks, communication in
computer networks. The reduced network is obtained by graph and label
rewriting rules and reproduces the full network dynamics with good ap-
proximation at all time scales. The tool is implemented in Python with a
graphical user interface. We discuss applications of LNetReduce to net-
work design and to the study of the fundamental relation between time
scales and topology in complex dynamic networks.
Availability: the code and application examples are available at https:

//github.com/oradules/LNetReduce.

1 Introduction

In bioinformatics and systems biology, molecular networks are used as mecha-
nistic models of cell physiology and disease with numerous applications in biol-
ogy and medicine. Networks are also used by the complex systems community
to study social interactions, epidemics, or computer communication. In various
fields, large scale networks are available as digraphs, in which vertices and edges
represent individuals (for instance molecules) and interactions, respectively. Net-
work topology is supposed essential for their properties, therefore a large number
of tools are dedicated to the analysis of network topology [4]. However, network
dynamics is also very important. The simplest model of dynamic network is ob-
tained by associating to each edge, a number representing the strength of the
interaction or its time scale. For molecular networks, this type of information
can result from quantitative network analysis approaches such as modular re-
sponse analysis, flux balance analysis, or from direct probing of the interaction
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by biochemical or biophysical methods. When interaction time scales are not
accurate, one can represent their values by integer orders of magnitude instead
of real numbers. In many cases, it is important to know that one interaction
is much faster than another without having to know by precisely how much.
Integer labelled digraphs are thus well suited to study network properties that
depend on timescale orders. In this paper we introduce a tool to simplify such
networks to an extent that qualitative analysis of their dynamics becomes easy.

2 Model

Dynamic networks are represented as integer edge-labeled digraphs G =
(V,A,L), with V the set of vertices, A ⊂ V ×V the set of edges, L : A → O ⊂ N
the label function. The labels can be obtained from timescales as follows. Fixing
a scale basis 0 < ε < 1, to each edge with kinetic constant k and time scale
τ = 1/k and we associate an integer kinetic order g = round(log(k)/ log(ε)). g is
the order of magnitude of k, as shown by εg−0.5 ≤ k < εg+0.5. The time units are
chosen such that the fastest reaction has k = 1, g = 0, which results in positive
integer orders. When ε = 1/10 one recovers the familiar decimal orders of mag-
nitude. Using this power parametrisation we can cope with widely distributed
rates. Such networks can be endowed with deterministic or stochastic dynamics.

The deterministic dynamics is defined by a set of ODEs:

ċi =
∑

(i,j)∈A

εgijcj − (
∑

(j,i)∈A

εgji)ci, i ∈ V, gi,j = L((i, j)). (1)

The stochastic dynamics is a random walk on the network, where the prob-
ability to jump from i to j is proportional to εgji . For continuous time random
walks, (1) is the backward Kolmogorov equation (master equation) and ci is the
probability to be in i.

3 Reduction algorithm

We are interested in the reduced model valid in the limit ε→ 0. This model can
be obtained algorithmically using the following rules [3, 6, 5, 7]:

1. Pruning. For any node with several successors keep the edge with minimum
order gi = min{gij , j ∈ Succ(i)} and delete all the other edges. We ask for
the condition 1 : at a bifurcation the minimum order is attained only once.
The result of this step is the deterministic auxiliary network Aux(G). If the
auxiliary network is acyclic, the algorithm stops after this step.

2. Pooling. If Aux(G) contains cycles, find a maximal set of disjoint irreducible
cycles. Replace these cycles by ”glued nodes”. As pooling will eventually
apply several times, it generates hierarchical glued nodes. Each glued node
retains the memory of the cycles it contains (nodes and edges) as follows:

– The glued node inherits all the edges of Aux(G) entering the cycle and
also all the edges of G exiting the cycle.
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Fig. 1. The successive steps of the reduction algorithm. a) is the initial model; b)
is the auxiliary network resulting from pruning; c) is the result of gluing the cycle
{A1, A2} and rewriting the exit edge labels (the labels 6, 4 become 6 + 8 − 2 = 12,
and 4 + 8− 2 = 10, respectively); d) is the auxiliary network after one more iteration;
e) results from gluing the cycle {{A1, A2}, A4} and rewriting the exit edge label (12
becomes 12 + 13 − 10 = 15) ; f) results from gluing the cycle {{{A1, A2}, A4}, A3};
g) restoring the single species without their limiting steps starting with the innermost
cycle. Limiting steps of different cycles are represented in red.

– The labels of edges from Aux(G) are maintained, while the labels of
edges of G and not in Aux(G) are recomputed according to the rule:

g′ = g + glim − gc (2)

where g′, g is the order after and before gluing, respectively, glim is the
largest order edge in the cycle (limiting step) and gc corresponds to
the cycle edge sharing the tail with the exit edge. Here we ask for the
condition 2: the limiting step is unique in all cycles.

If the application of pooling results in a non-deterministic graph, apply prun-
ing again. Iterate until there are no more cycles.

3. Restore glued vertices through the following steps:
– Restore all vertices of the glued cycles.
– Restore all cycle edges except the limiting step.
– An edge exiting the glued cycle and arriving in an unglued node, is

replaced by an edge with the same head and label, but originating from
the tail of the limiting step.

– An edge exiting the glued cycle and arriving in another glued cycle is
replaced as above using its original head within the glued cycle.

The result of restore is path independent: one can start with the most com-
pact or less compact cycles in the hierarchy.
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The top level version of the algorithm is given by Algorithm 1. If conditions
1 and 2 are everywhere satisfied, then the reduced graph is acyclic and deter-
ministic. Exceptions lead to stopping the reduction before eliminating all cycles
and multiple branching. An example of application of the algorithm to ”flower”

Algorithm 1 Reduce

Require: labeled digraph G

Ensure: reduced labeled digraph

if condition 1 then
Prune, compute auxiliary deterministic graph;

else
Restore glued vertices;
return

end if
while Ncycles > 1 do

Compute disjoint, irreducible cycles;
if condition 2 then

Glue cycles;
if condition 1 then

Prune, compute auxiliary deterministic graph;
else

break
end if

else
break

end if
Ncycles:= number of cycles;

end while
Restore glued vertices;

motifs, consisting of a central hub node and satellite nodes is shown in Figure 1.

4 Applications

4.1 Connection between topology and dynamics

For a given topology one can have several reduced models, depending on the
kinetic orders. Each reduction corresponds to a particular qualitative dynamics.

In order to illustrate the connection between network topology and its dy-
namics in the limit of well-separated rate constants, we made a number of exper-
iments on fragments of real-life transcription networks extracted from Dorothea
database (https://saezlab.github.io/dorothea/), for the edges of which we
assigned sequential and distinct kinetic orders. For example, we extracted all net-
work neighbours of MYCN transcription factor (see Figure 2,A, and randomly

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 12, 2021. ; https://doi.org/10.1101/2021.05.11.443578doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.11.443578
http://creativecommons.org/licenses/by-nc/4.0/


5

assigned kinetic orders from 0 to 9, to network reactions. Application of LNetRe-
duce to 10000 random kinetic order assignments led to 51 topologically distinct
(topologically isomorphic with node identity kept) model reductions, where some
reductions were much more frequent than others. Of note, in approximately 7%
cases, LNetReduce met a conflict in the reduction algorithm. In these cases, two
kinetic rates of the same order in the outgoing reaction fork happened at a stage
of reduction process. Interestingly, rare reductions (Figure 2C,D) were typically
characterized by the presence of reactions with effectively opposite direction
compared to the initial network, and inefficient, leaky dynamics of MYCN, with
small probability of visiting it by a random walk at longer timescales (as op-
posed to the activating and efficient dynamics of the most frequent reductions,
Figure 2A,B). Other computation experiments with fragments of the transcrip-
tion network are described at the LNetReduce web-site as Python notebooks.

Fig. 2. Example of LNetReduce application for studying the connection between the
network topology and dynamics, using a small fragment of experimentally obtained
transcription regulation network. A) Network fragment. B) Most frequent topologically
isomorphic reduction and its dynamics. C,D) Examples of rarely obtained reductions
and their dynamics. Red arrows show edges whose direction is reverted with respect
to A).

4.2 Design of slow transients

The reduced graph is a forest of inverted trees. For such a model, relaxation
time scales defined as times after which something happens are simply the new
labels [3]. However, the relation between initial step time scales gij and the final
labels can be intricate. In particular, relation (2) shows that timescales tend
to be larger than timescales of the initial steps and complex networks tend to
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have very slow transients. Slow transients are important in biology for a variety
of processes from cellular memory to long period circadian oscillations. We can
formulate the following design rule for long transients:

Rule 1 At least at some iteration, the auxiliary network must contain cycles
such that the cycle step at an exit point is not the limiting step, glim > gc. Then,
according to (2) g′ > g, new steps are slower than older.

Rule 1 is responsible for the slow transient in Figure 3. This rule also explains
the counter-intuitive property that a non-uniform increase of all switch rates in
a stochastic network can lead to slower transients [2]. Large networks can more
easily generate slow transients by rule 1 or by simple addition, in the presence
or absence of separation, respectively. This explains why proteins controlling
circadian clock in Neurospora have about one hundred phosphorylation sites [1].

Fig. 3. Application of LNetReduce to identify slow transient dynamics in networks. The
cascade shown on the left, after fast initial dynamics achieves a very slowly relaxing
state (middle panel). The timescales of kinetic rates are shown as numbers on reaction
arcs (the smaller the faster). On the right the result of application of LNetReduce is
shown, explicitly revealing the existence of a very long timescale in the network, four
orders of magnitude larger than any reaction in the initial network (12 vs 8). Using
random permutations of kinetic orders, we estimate the frequency of emergence of slow
transients with this network topology to 4%.

5 Conclusion

We provide a tool allowing to study dynamics of networks with separate
timescales. The separation criteria are formulated as the the Rules 1,2 in the
paper. The tool computes a reduced model that is a forest of inverted trees. The
reduced model provides immediately the relaxation timescales of the network
and its qualitative dynamics. For random walk applications, our tool represents
an alternative to uniform switching rates. For network design it allows to study
the interplay between time scales and topology for predicting network dynamics
and eventually controllability. In future work we will consider situations when
some of the separability conditions can be released.
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