Stability of uncertain piecewise-affine systems with parametric dependence - Archive ouverte HAL
Communication Dans Un Congrès Année : 2020

Stability of uncertain piecewise-affine systems with parametric dependence

Résumé

This paper proposes a numerical approach to the stability analysis for a class of piecewise-affine systems with (possibly time-varying) parameter-dependent cells and dynamics. This class of model aims at allowing a better modelling of time-varying or parameter-varying nonlinearities of physical phenomena such as dry friction. We form the stability certification problem as the one of finding a Lyapunov function that is parameterised as a polynomial function of the variable parameter. The application of the well-known Lyapunov stability theorem together with the use of the generalised S-procedure reduces the problem to checking whether a certain set of matrices has the sum-of-squares property. The latter can be solved using well-documented numerical solvers, and we provide two examples of successful applications at the end of the paper.
Fichier principal
Vignette du fichier
S240589632033250X.pdf (218.1 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03225798 , version 1 (24-04-2023)

Licence

Identifiants

Citer

Paolo Massioni, Laurent Bako, Gérard Scorletti. Stability of uncertain piecewise-affine systems with parametric dependence. 21th IFAC World Congress, Jul 2020, Berlin, Germany. pp.1998-2003, ⟨10.1016/j.ifacol.2020.12.2508⟩. ⟨hal-03225798⟩
47 Consultations
35 Téléchargements

Altmetric

Partager

More