Transition from axisymmetric to three-dimensional turbulence
Abstract
In purely axisymmetric turbulence sustained by a linear forcing mechanism, a stable, entirely poloidal flow is observed when the toroidal component of the forcing is below a threshold. We investigate using numerical simulations whether this state persists when toroidal variations of the flow are continuously reintroduced and the forcing is purely poloidal. It is shown how the pressure-strain correlation allows the redistribution of the energy towards the toroidal component. A simple statistical model allows to capture the main physical effects on the level of the global energy balance. This model is then used to investigate the stability of the poloidal state for various toroidal-to-poloidal forcing strengths and different degrees of axisymmetry.
Origin : Files produced by the author(s)