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ABSTRACT

In purely axisymmetric turbulence sustained by a linear forcing mechanism, a sta-
ble, purely poloidal flow is observed when the toroidal component of the forcing is
below a threshold. We investigate using numerical simulations whether this state
persists when toroidal variations of the flow are continuously reintroduced and the
forcing is purely poloidal. It is shown how the pressure-strain correlation allows the
redistribution of the energy towards the toroidal component. A simple statistical
model allows to capture the main physical effects on the level of the global energy
balance. This model is then used to investigate the stability of the poloidal state for
various toroidal-to-poloidal forcing strengths and different degrees of axisymmetry.
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1. Non-integer dimensions

Most turbulent flows in nature are not statistically isotropic. In general body-forces
associated with density differences, rotation, magnetic fields or imposed velocity gra-
dients are present and induce anisotropy. Typical examples are strong rotation, or
the presence of a strong magnetic field in conducting fluids, both leading to close to
two-dimensional (2D) behaviours [1,2]. Even though asymptotically these flows tend
to the perfect 2D limit [3,4], in general the forces are not strong enough to perfectly
two-dimensionalize them [5-7] so that the resulting dynamics are somewhere between
2D and 3D behaviours. Similar partial two-dimensionalization is observed in thin-layer
turbulence [8-10], or in rotating Rayleigh-Bénard convection [11]. This partial two-
dimensionalization often complicates the analysis of realistic turbulent flows, since
features characteristic of both 3D and 2D turbulence are entangled, and these flows
are therefore not tractable by theoretical approaches applicable to either of the two
asymptotic regimes.

A particular model-system which is also between two and three dimensions is purely
axisymmetric turbulence. The axisymmetric Euler equations were first investigated in
[12] to extend the successful statistical theories of two-dimensional turbulence [13-16]
to a system in between two and three dimensions (and to the description of the flow
within a vortex ring [17]). The theoretical predictions of this system were shown to
be in qualitative agreement with experimental measurements of a stirred turbulent
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flow in a cylinder, which is only axisymmetric on average [18,19]. This success inspired
further theoretical studies of the axisymmetric Euler system [20-23], and recently the
first numerical simulations of strictly axisymmetric turbulence [24-26].

The most recent of these investigations [26] , in which a linear forcing protocol is
used, showed that two very different types of flows can be observed in the axisymmetric
system, depending on the forcing anisotropy. When only the poloidal components of
the flow are forced, a purely poloidal flow is observed with features typical of two-
dimensional two-component (2D-2C) turbulence, such as an inverse energy cascade
and coherent structures. It was shown that when a toroidal forcing is added, the
purely poloidal flow remains stable and the toroidal flow absent, as long as the forcing
anisotropy is sufficiently weak. Only when both forcing rates become of the same order,
an abrupt transition is observed to a flow where both the poloidal and the toroidal
components are non-zero. In this two-dimensional three-component (2D-3C) flow, a
direct energy cascade is observed towards the small scales, and the coherent large scale
structures are destroyed.

The assessment of the robustness of this critical transition is the main subject of the
present work. More specifically, we want to answer the question whether the poloidal
flow remains stable for a purely poloidal forcing, when pure axisymmetry is violated.
For this, we will gradually re-introduce variations of the flow in the toroidal direction.
In a sense, we will then investigate a continous transition between flows of different
dimensionalities (axisymmetric [2D] to 3D). Such a procedure in which dimensionality
is modified in a gradual way, was first introduced by Frisch et al., who investigated
turbulence, and in particular the energy cascade, with a non-integer dimension [27,
28]. This change in dimension was applied directly to the statistical descriptors of
turbulence, using two-point closure techniques. In direct numerical simulations, such
a change of dimension does not seem straightforward, but recently a handle on this
was found by applying spectral decimation on the Fourier-modes, thereby mimicking
the mode and triad density of turbulence with a dimension between two and three
[29,30].

We do not proceed in the same way but rather consider flows varying slowly in the
toroidal direction in such a way that the system can be continuously tuned from the
axisymmetric limit to the three-dimensional limit: In practice, we will consider forced,
partially axisymmetric turbulence with modified derivative operators. We will address
two questions. First, how robust is the bifurcation from a purely poloidal (2D2C)
flow to a three-dimensional three component flow when axisymmetry is not perfectly
satisfied. Secondly, can we model this effect on the level of the energy balance, as we
did for the purely axisymmetric case in [26]?

In the following section we introduce the model-equations. In Sec. 3 we describe the
numerical methodology. Section 4 contains our numerical results. In Sec. 5 we attempt
to model the system and show how the pressure term allows to redistribute energy
between the components of the system. Section 6 concludes the manuscript.

2. Notations and equations

We consider a turbulent flow in cylindrical geometry. The height of the cylinder is L
and the radius R (see Fig. 1). The axis is in the z-direction, the radial direction is r and
the azimuthal direction 6. In [26] we considered the dynamics of purely axisymmetric
turbulence in such a geometry. In particular, we considered the influence of the forcing
anisotropy on the dynamics using a linear forcing protocol and varying the relative



Toroidal field (ug)

4
4

7~ )

[
z
] 0
\ Poloidal field (u,, u,)
Q// L
R r

Figure 1. The cylindrical domain considered in the present investigation. The height of the domain is L, the
radius R. The toroidal coordinate is indicated 6 and the poloidal coordinates 7, z.

poloidal and toroidal forcing-strengths. We assess in the present investigation whether
the flow remains purely poloidal when the forcing is purely poloidal and a small amount
of non-axisymmetry is introduced into the system. The way we do this will now be
described. We consider the Navier-Stokes equations in cylindrical coordinates and
apply them to a flow varying slowly in the azimuthal direction, u = u(r, af, z,t) and
p = p(r,ab, z,t), where u and p are the velocity and pressure fields, respectively,
and « is a parameter in the [0, 1] interval. This amounts to imposing a characteristic
lengthscale in the toroidal direction Ly = oL, ,, where L, is the characteristic length
in the poloidal (radial and axial) directions. The flow is strictly axisymmetric (2D)
when a = 0, and three-dimensional when a = 1. Under these conditions and after a
change of variables (6 — 6’ = af)), the Navier-Stokes equations write:

2
D] = fy+vADu — o+ 2, (1)
D(a)[uz] = fz'i‘VAga)uz_ 2D, (2)
DOlug] = fo+vAf ug — ~0p — <2, (3)

where the components of an externally imposed volume force are indicated by f;, v
is the kinematic viscosity, and the ’ have been omitted for the sake of simplicity. The
operator D(®[g] is defined as

D g] = dyg + u,0rg + 0,9 + a%ﬁeg, (4)

Aga) are the three components of the cylindrical vector Laplacian, where, as in
D@[g], all azimuthal derivatives are multiplied by a or a2 according to their order.
Roughly speaking, intermediate values of the parameter o between 0 and 1 correspond
to dimensionalities of the Navier-Stokes equations between 2 and 3.



Incompressibility is ensured by the relation
10, (ruy) + O,u, + ar 9 (ug) = 0. (5)

As already mentioned, the above system represents the Navier-Stokes equations for
a = 1 and axisymmetric flow for & = 0. In between these two values, the flow is
expected to show a transition between the two regimes. It is this transition that we
will try to characterize in the following !.

We will thereafter focus on the energy balance, and distinguish between the toroidal
and poloidal energy components, respectively denoted as

1 1
ET:§< 7 EP:§<U72~+U§>- (6)
Their ratio is denoted by
Er
= —. 7
=5, (7)

The energy balance derived from the system (1-5) formally writes:

dE
Tf:PP—EP+H+Ta (8)
dET
T pp—ep—TI—T 9
dt T €T ) ()

where the injection of energy is given by

Pp = <u7“fr =+ szz>v Pr = <’LL9f9> (10)
and the dissipation rates

Ep = —V<UTA(Q)UT +UZA,(ZQ)UZ>7 (11)

r

er = —v{ugAlug). (12)

The other two terms are redistributive terms which allow the energy to be exchanged
between the toroidal and poloidal energy components. The quantity

1%:<u%”> (13)

is a transfer term and the pressure term is given by

H:aCf%>. (14)

L Another interesting limit is o — oo. Indeed in this limit the system might also tend to an axisymmetric
system, since all modes with variations in the 6 direction will attenuate through diffusion so rapidly that
variations are smoothened out. We have not checked this conjecture and focus here on the range between oo = 0
and a = 1 where we know the precise behavior of the limiting cases.




It is in particular this last term on which we will focus. Indeed, in our previous in-
vestigation [26] it was absent from the energy balance, since o was set to zero. The
magnitude of this term will therefore (at least partially) determine how the energy
balance will be affected if the flow is not strictly axisymmetric.

3. Numerical method

3.1. Numerical setup

We carry out simulations in a cylindrical geometry with an aspect ratio of L/R = 1.7,
and a radius R = w. Two values of the kinematic viscosity are used, ¥ = 0.01 and
v = 0.001, respectively. In a recent investigation of linearly forced isotropic turbulence
at low Reynolds numbers in a tri-periodic cubic domain [31], we showed that the
control parameter determining the onset of turbulence in such a system is

2
Re= P (15)
1%

where the lengthscale L was chosen equal to Lp/2w, with Lp the domain size and
cp the forcing-strength. The present configuration is obviously different, but we still
define the Reynolds number according to (15), with L the cylinder height. This gives
not necessarily the same value for the critical value of the Reynolds number as in the
isotropic case, but this is not the subject of the present investigation. The values of
Re in our simulations, using the above parameters with the two values of viscosity,
are Re = 1141; Re = 11410.

The numerical code integrates the Navier-Stokes equations in cylindrical geometry
and is based on a pseudo-spectral Fourier-Chebychev decomposition. The radial (r)
and axial (z) directions of the cylindrical computational domain are discretized using
Chebychev polynomials, while the toroidal () direction is decomposed by Fourier
series ensuring the periodicity condition. A projection scheme is used to solve the
coupling between pressure and velocity [32]. An originality of the code [33] lies in the
treatment of the azimuthal direction: the whole diameter —R < r < R (not only the
radius) is discretized with an even number of radial Gauss-Lobatto collocation points.
This approach [34] avoids problems commonly encountered on the axis, » = 0 in
numerical simulations performed in cylindrical coordinates. The price to pay is that for
the azimuthal discretization no fast-Fourier solver exists, which makes this approach
prohibitively expensive for very high azimuthal resolutions. The precise formulation
of the full numerical method and its convergence properties can be found in [33].
The modifications allowing to take into account the transition from axisymmetric to
three dimensional turbulence, as well as their validation, are detailed in [35]. For v =
0.01, the resolution of the simulations in the radial, vertical and azimuthal directions,
respectively, is N, X N, x Ng = 190 x 181 x 80 gridpoints, and the time step is set
to At = 5 x 10~%. Simulations with different values of a varying from 0 (strictly
axisymmetric) to 1 (normal three-dimensional case) are carried out, namely a = 0,
0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.

With these settings, the attainable large-scale Reynolds number based on the
kinetic energy, defined as Rep = L+/2E/3/v, is about 300 for v = 0.01, which is
rather low. In particular the case o = 0 is challenging, since due to the inverse cascade
that we have evidenced in this case [26], the energy at the large scales increases
importantly. The numerical resolution required to simulate such a flow therefore needs



to be substantially larger than for the three-dimensional or partly three-dimensional
flows. In two-dimensional turbulence, without walls, the dissipation tends to zero
for large Reynolds numbers. A steady state in linearly forced two-dimensional
turbulence will therefore contain a kinetic energy which becomes asymptotically
large if the viscosity tends to zero. In the present case, where solid boundaries are
present, dissipation is present in this limit depending on the asymptotic scaling of the
turbulent boundary layer thickness. This thickness is still a subject of debate [36,37].
We do not go further into this debate, but have observed that it is computationally
very challenging to obtain converged statistics in a steady state in the poloidal a@ = 0

limit. Even at the relatively low Reynolds numbers considered, simulations could be
(a)

carried out for a limited time only and the modified Laplacian A;

(1) was replaced by the normal Laplacian Agl) in these direct numerical simulations
(DNS). The non-integer dimension « therefore affects only the nonlinear and pressure

terms in these DNS.

in expression

In order to investigate higher Reynolds number dynamics and to be able to use

the modified Laplacian AEO‘), we also carried out simulations based on the spectral
vanishing viscosity method (SVV) [38,39]. This method, of the Large Eddy Simulation
type, allows to attain higher Reynolds numbers. The SVV operator can be expressed
as:

vAL), = vA® 4 V@ . (cQV@), (16)

where ¢ is the additional viscosity and @ is a scale-dependent coefficient which becomes
larger at smaller scales. The SVV method consists in enhancing the dissipation for
smaller scale, in order to allow for numerical convergence at high Reynolds numbers.
Starting from the definition provided in Eq. (4), the SVV gradients and Laplacian are
modified as in Eq. (1) to take into account the influence of « on the derivatives, i.e.,
first- (resp. second-) order derivatives are multiplied by a (resp. a?).

We verified that at v = 0.01 the results of the SVV method and of the DNS concord.
We will for instance show in Fig. 5 that the results for + are consistent between the
two methods. We also present in the following results using this method for a viscosity
v = 0.001, therefore corresponding to a 10 times larger value of the Reynolds number,
Re = 11410, and using the modified Laplacian Aga). At this Re value it appeared
impossible using the available numerical resources to reach a steady state for a = 0.
Consequently, the SVV simulations are presented for oo > 0.1.

3.2. Linear forcing

The choice of the forcing protocol is important in the investigation of transitions. We
use here a linear forcing protocol [40,41], where the forcing strength is proportional
to the energy in certain or all modes constituting the velocity field. In axisymmetric
turbulence, we can introduce an anisotropic linear forcing

f = crure, + cou e, + crugey. (17)
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Figure 2. Typical instantaneous visualizations of the kinetic energy in poloidal planes for SVV flows at
Re =11410: (a) a = 1; (b) a = 0.5; (¢) a = 0.2; (d) o = 0.1.

Solutions, u, = 0, u, = 0 or ug = 0 are all compatible with this forcing. The forcing
is applied in the poloidal plane only, ¢ = 0 and ¢, = ¢, = ¢p so that

f=cp(ure, + uze,). (18)

The forcing parameter is set to cp = 0.4.

Recalling the fact that in this limit the o = 0 axisymmetric flow does not generate
any toroidal component [26], our choice of setting ¢y to zero will allow to see for which
value of « this purely poloidal flow becomes unstable. This forcing is different from the
spectral-band forcing used in [26], as it is applied to all scales of the velocity field, but
both forcing schemes have a linear behaviour. The present forcing implementation is
indeed more convenient with the here-used numerical method, in which wavenumbers
cannot be easily defined in the poloidal plane due to the mixed Fourier-Chebychev
decomposition.

4. Numerical results

4.1. Flow visualizations

Typical instantaneous visualizations of the kinetic energy in the poloidal plane are
shown in Fig. 2 for four different values of o and a Reynolds number Re = 11410. The
visualizations show that different types of flow structures are observed. It is however
not straightforward to characterize the flow or to discern particularities which are very
much a-dependent.
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Figure 3. Typical instantaneous visualisations of the kinetic energy in a horizontal plane at mid-height of
the cylinder, for the SVV simulations at Re = 11410 : (a) a = 1; (b) e = 0.5; (¢) @ = 0.2; (d) o = 0.1.

This is quite different for the visualizations in Fig. 3 where we show kinetic energy
patterns in the horizontal center-plane through the cylinder for the SVV simulations
at Re = 11410 and four values of « (the qualitative features of DNS and SVV at
Re = 100 are very similar). It seems that in the 3D limit (o = 1) the flow exhibits
a periodic behaviour with a two-cell structure in planes perpendicular to the cylinder
axis. The presence of a small number of large scale structures is not surprising in this
case, since our forcing drives all flow scales, including scales of the size of the domain.
In the von Karman flow, for instance, where the flow is driven at a scale of the same
order as the domain size by rotating impellers, the mean-flow also exhibits a double
cellular structure [42].

Varying a changes the frequency of this cellular structure with an approximate
dependence proportional to a~!. Indeed, for o = 0.5, four structures are observed,
a = 0.2 yields 10 cells and for o = 0.1, 20 cells can be observed. This is a direct
consequence of the definition of a (indeed, the characteristic length in the toroidal
direction Iy ~ a™1).

4.2. Time evolution of energy and dissipation

In Fig. 4(a) we show the time signal of the kinetic energy averaged in the computational
domain. A very distinct behaviour is observed for the different cases. In particular for
a = 1, an almost periodic behavior is observed, leading to large variations around the
steady state value. The other simulations show less important fluctuations during the
steady state. The dissipation, shown in Fig. 4(b), follows this behavior, although the
time signals naturally display higher frequencies.
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Figure 4. Time signals of (a) kinetic energy and (b) dissipation rate, averaged over the domain, for Re = 11410
(SVV runs). The values of « are the same as in Figs. 2 and 3.
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Figure 5. (a) Time signals of the toroidal and poloidal components of the kinetic energy. Poloidal energy is
indicated as solid lines, toroidal energy as dotted lines. (b) Ratio v = Er/Ep time-averaged in the statistically
steady state, as a function of a, for Re = 1141 and 11410. For the lower value of Re, both SVV (closed symbols)
and DNS (open symbols) data are shown. For Re = 11410, results are obtained using the SVV method only.

The origin of the quasi-periodic modulation observed for the results at a = 1 is not
clear. However, we mention in this context that similar quasi-periodic fluctuations in
fully developed turbulence are also observed in controlled simulations performed in cu-
bic periodic domains in the presence of a steady forcing [43,44]. A further investigation
of this modulation definitely seems to be an interesting perspective.

4.3. Flow anisotropy

After this evaluation of the global energy and dissipation balance, we now investi-
gate how the energy is distributed over the toroidal and poloidal components. The
time behavior of both components is shown for four values of a in Fig. 5(a). The
same qualitative behavior is observed for these quantities as for the total energy and
dissipation (Fig. 4). Furthermore, it is observed that the poloidal component of the
energy is in all cases larger than the toroidal one. Averaging over the steady state of
the simulations allows to compare quantitatively the magnitudes of both components.
The ratio between the toroidal and poloidal energy components -, defined in Eq. (7)
and investigated in [26] is shown in In Fig. 5(b) as a function of a. The figure shows
that for the two Reynolds numbers considered a transition is observed from a purely
poloidal flow (v = 0), at & = 0, to an almost isotropic energy distribution (y = 1/2
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Figure 6. Anisotropy indicators of the flow in (a) linear and (b) logarithmic scale.

or, equivalently, Er = Ep/2) for @« — 1. The general trend is similar for the two
values of Re, even though the increase of v for small values of « is faster for the
larger Reynolds number. The emerging picture is thus that the gradual introduction
of non-axisymmetry allows a return to isotropy of the energy balance which is faster
(in terms of «) for higher Reynolds numbers.

We show for the low Reynolds number the results obtained using both the SVV
approach and DNS. It is observed that the results are very close, which validates the
SVV model, at least with respect to the global energy balance.

To complete this analysis of the global flow properties, we introduce gradient-based
indicators to measure the axisymmetry of the flow. These indicators are defined as

(7 R I (¢ /) B N (G3)°)

9 z ) - .

()" + (5)) ()" + (52)) ()" + (%“;)3(19)
The quantities R,, R, and Ry are therefore defined, for each velocity component,
as the ratio between the strength of the volume-averaged azimuthal derivatives and
that of the poloidal derivatives. Their values measure directly the relative azimuthal
variations. Since their definitions involve derivatives, their value is more sensitive to
small-scale variations than those of energy-based quantities. R,, R, and Ry are plotted
as a function of a in Fig. 6(a). One can note that all of them are increasing functions of
«. This confirms that the axisymmetry constraint is gradually relaxed as « increases.
More specifically, the log-scale plot of Fig. 6(b) shows that R; (i € {r,6,2}) increases
strongly for a < 0.2. Therefore, if the behaviors of R; can be considered as indicators
of small-scale dimensionality, then the transition from the axisymmetric to the three-
dimensional regime is most pronounced in the interval a € [0, 0.2].

Ry =

5. A statistical model for partially axisymmetric turbulence

In our previous investigation [26] we developed a statistical model to reproduce and
understand the dynamics of the toroidal and poloidal energy components in strictly
axisymmetric turbulence. This model closes the equations (8,9) governing the time-
evolution of the poloidal and toroidal energy, respectively. In this section we will extend
it to take into account the possible # dependence of the dynamics introduced in the
present investigation. The model as such is not meant to improve on any detailed
engineering model available in the literature. It will, however, allow to interpret the

10



global energy balance of the system and its anisotropy, and to understand how the
parameter « modifies the flow.

5.1. Modeling the pressure redistribution term

Following the same methodology as in [26], we now derive a simple statistical model
reproducing the system behavior.

When a # 0, a new term I appears in equation (8,9). This pressure term is expected
to isotropize the system in the three-dimensional case. The simplest model representing
such a redistribution is a linear relaxation-towards-isotropy model in the spirit of
Rotta’s phenomenology [45],

CII 1
I=a— (Er—=-Ep]). 2
aT < T 2 P) (20)

This model relaxes the turbulence to its isotropic form where E7p is one third of the
total energy. The typical timescale is the nonlinear, or integral time, associated with
the large-scale kinetic energy. The linearity in « in expression (20) is directly moti-
vated by the shape of the pressure-strain correlation (14). Clearly, more sophisticated
expressions may be thought of, but the present model represents at the zeroth order
the physics of pressure distribution and relaxation towards isotropy. For an extended
discussion of pressure-strain models we refer to reference-works on the subject [46,47].
Indeed, our goal is here not to develop a new pressure-strain model, but to understand
how the pressure-strain correlation acts on the system in conjunction with other flow
features such as energy production, transfer and dissipation.

Our simulations consider the case of purely poloidal forcing, fo = 0, f,, f. # 0,
which was shown to display a strictly 2D behaviour with E7r = 0 for the axisymmetric
case a = 0 [26]. As was shown in [26], in this limit the transfer was equal to zero so
that the dynamics were purely poloidal. In the presence of the pressure redistribution
term, the kinetic energy can be redistributed over the other components.

To obtain an estimate of the energy redistribution, we consider the case without
toroidal forcing (cr = 0), while neglecting the transfer 7. In the steady state, the
toroidal energy balance then reduces to

€T = —II. (21)

Using the model expression for IT [Eq. (20)] and a Taylor estimate of the dissipation
[48],

- (22)
T

with dp a constant, we obtain for the energy ratio

1 acn/dT

=_—— 23
21+acn/dT’ ( )

v

which shows that for small values of « and ¢ = 0, the value of + is directly proportional
to a.

11
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Figure 7. Comparison of the model prediction (lines) with the numerical data (symbols). The solid black
line is the large Reynolds number prediction (23) with dr/crp = 0.1. The dotted lines are predictions obtained
for smaller values of Re [Eq. (26), for ¢, Re™1 = 2;1;0.5].

The relationship (23) is plotted in Fig. 7 as a function of «, for dp/crp = 0.1 (black
solid line), and compared with the numerical data. This value of dp/cyp was obtained
by fitting the numerical data with Eq. (23). What we observe is that the model tends,
as the data, to a value v = 1/2 for large . However, the model prediction shows
a more rapid trend towards isotropy, in particular as compared to the low-Reynolds
number simulations. Indeed, no low-Reynolds numbers effects were taken into account
in the modeling approach. We now show that such effects can be taken into account
in the model at first order.

At small Reynolds numbers one needs to take into account the fact that the scale
separation is not sufficient and that the time-scale 7 in (22) is therefore affected by
viscosity. In this case, we can replace Eq. (22) by

1 1
er ~ dr ( i ) By, (24)
Ty TNL
where
L2 _
Ty ~ > TNL ~ Cpl- (25>

Using this estimate, replacing the timescale 7 in the pressure strain-model (20) by 6;1
since it is an inviscid effect, and using Eq. (21), the expression for v becomes

acn/dT
1+ c,Re ) + acnr/dy’

1

_ 26
7= 57 (26)
where ¢, is a model constant. Using expression (26) for arbitrary values of Re allows
to take into account at an empiric level the finiteness of the Reynolds number. This
expression is plotted in Fig. 7 as a function of « for several values of Re (dotted lines).

The modification of the timescale allows, to a certain extent, to take into account the
trends observed in the numerical data.
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5.2. Predictions of a two-equation model on the influence of forcing
anisotropy

Now that we have assessed the behavior of the pressure-strain correlation, we can
adapt the two-equation model derived for purely axisymmetric turbulence [26] to the
present system, in order to close the system (8,9). This will allow us to assess how the
transition from a purely poloidal flow towards a mixed poloidal-toroidal (or swirling)
flow is affected when the forcing anisotropy is changed. In the foregoing, we have kept
cr = 0 and cp = 0.4. Carrying out a full parameter scan varying simultaneously
cr/cp and a using DNS would be prohibitively expensive. We therefore integrate
the simple energy model proposed in [26], completed with the pressure strain mode
(20). We consider the high-Reynolds number case and do therefore not use the above
mentioned viscous correction to the dissipation. The model is

(TEr(Er — 2Ep)

T = 12 3 (27)
Pi = 2CZ'E1', (28)
E:
g = di7z, (29)
CI1 1
I = a—|(Er—-FE 30
o (Br - 30). (30)

with i € {T, P} and 7 a characteristic timescale which we have modeled as
T =L/(Ep + aEr)/2 (31)

Constants are chosen cg = 9, dp = 0.9,dr = 0.9, = 0.024. Indeed, we have set
crr/dr = 10 as evaluated in Fig. 7 and we have chosen the model-constants dp, dr, ¢
as in our previous investigation, even though the forcing was different [26]. The present
results are therefore meant to be qualitative.

We have numerically integrated the above model and the results are shown in Fig.8.
It can be seen that when strictly axisymmetric i.e. a = 0, the flow remains stably
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poloidal (7 = 0) up to a value of ¢y /cp = 1. It was shown analytically in Ref. [26] that
the model, in the absence of the pressure term displayed some hysteresis, but only in a
very narrow band of values ¢r/cp. We do not focus on this effect here which is absent
as soon as « is not negligably small anymore. Instead, we focus on the robustness of
the poloidal regime as a function of «.

When « increases from 0 to 1/128, the values of v depart visibly from the case of
a = 0, but there is still a significant range of c¢r/cp where the flow remains close to
purely poloidal. The larger values of « show that the transition between the a = 0
and the o = 1 case is gradual. The results remain obviously of speculative nature,
but it seems plausible that qualitatively the pressure-strain redistribution will act as
illustrated by the model.

6. Conclusion

The here presented numerical simulations illustrate how turbulence in a cylindrical
cavity behaves, when the flow is partially axisymmetric. The results confirm that the
flow remains purely poloidal when axisymmetry is imposed, as was observed in ref.
[26]. However, as soon as the axisymmetry is broken, pressure-strain correlations allow
to redistribute energy to the toroidal component. For small three-dimensionality (small
«), the flow remains close to poloidal, and the ratio of toroidal to poloidal energy -~ is
a linear function of « in this limit. It therefore seems that an almost purely poloidal
flow can survive in close to axisymmetric flow. A possible application of this case is
the tokamak, a thermo-nuclear fusion plasma geometry, where the toroidal magnetic
field is very strong leading to close to axisymmetric dynamics. Possibly in such a
flow a transition from purely poloidal to three-component flow might be observed. We
therefore currently investigate a flow similar to the current one in toroidal geometry.

In this context it will be interesting to investigate the other limit where o — co. Such
a case is interesting since physically it might correspond to the case where diffusion
and viscosity are dominant along the toroidal direction, leading thereby to a flow
which is axisymmetric through the rapid smoothening of variations in that direction.
In this limit the resulting flow might thereby also be close to axisymmetric, but the
underlying mechanisms leading to the state would be radically different. This is left
for future research.
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