BeamLearning: an end-to-end Deep Learning approach for the angular localization of sound sources using raw multichannel acoustic pressure data - Archive ouverte HAL
Article Dans Une Revue Journal of the Acoustical Society of America Année : 2021

BeamLearning: an end-to-end Deep Learning approach for the angular localization of sound sources using raw multichannel acoustic pressure data

Résumé

The following article has been submitted to the special issue on Machine Learning in Acoustics in JASA. After it is published, it will be found at http://asa.scitation.org/journal/jas. Sound sources localization using multichannel signal processing has been a subject of active research for decades. In recent years, the use of deep learning in audio signal processing has allowed to drastically improve performances for machine hearing. This has motivated the scientific community to also develop machine learning strategies for source localization applications. In this paper, we present BeamLearning, a multi-resolution deep learning approach that allows to encode relevant information contained in unprocessed time domain acoustic signals captured by microphone arrays. The use of raw data aims at avoiding simplifying hypothesis that most traditional model-based localization methods rely on. Benefits of its use are shown for realtime sound source 2D-localization tasks in reverberating and noisy environments. Since supervised machine learning approaches require large-sized, physically realistic, precisely labelled datasets, we also developed a fast GPU-based computation of room impulse responses using fractional delays for image source models. A thorough analysis of the network representation and extensive performance tests are carried out using the BeamLearning network with synthetic and experimental datasets. Obtained results demonstrate that the BeamLearning approach significantly outperforms the wideband MUSIC and SRP-PHAT methods in terms of localization accuracy and computational efficiency in presence of heavy measurement noise and reverberation.
Fichier principal
Vignette du fichier
Pujol_Bavu_Garcia_submitted_JASA.pdf (2.82 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03219058 , version 1 (06-05-2021)

Identifiants

Citer

Hadrien Pujol, Eric Bavu, Alexandre Garcia. BeamLearning: an end-to-end Deep Learning approach for the angular localization of sound sources using raw multichannel acoustic pressure data. Journal of the Acoustical Society of America, 2021, Special issue on Machine Learning in Acoustics, 149 (6), pp.4248-4263. ⟨10.1121/10.0005046⟩. ⟨hal-03219058⟩
167 Consultations
99 Téléchargements

Altmetric

Partager

More