Nonparametric estimation of the expected discounted penalty function in the compound Poisson model - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2021

Nonparametric estimation of the expected discounted penalty function in the compound Poisson model

Florian Dussap

Résumé

We propose a nonparametric estimator of the expected discounted penalty function function in the compound Poisson risk model. We use a projection estimator on the Laguerre basis and we compute the coefficients using Plancherel theorem. We provide an upper bound on the MISE of our estimator, and we show it achieves parametric rates of convergence without needing a bias-variance compromise. Moreover, we compare our estimator with the Laguerre deconvolution method. We compute an upper bound of the MISE of the Laguerre deconvolution estimator and we compare it on Sobolev-Laguerre spaces with our estimator. Finally, we compare these estimators on simulated data.
Fichier principal
Vignette du fichier
projection_fourier_gerber_shiu_v0.pdf (721.66 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03212783 , version 1 (30-04-2021)
hal-03212783 , version 2 (17-01-2022)

Identifiants

  • HAL Id : hal-03212783 , version 1

Citer

Florian Dussap. Nonparametric estimation of the expected discounted penalty function in the compound Poisson model. 2021. ⟨hal-03212783v1⟩
137 Consultations
73 Téléchargements

Partager

More