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Nonparametric estimation of the expected discounted penalty
function in the compound Poisson model

Florian Dussap∗
Université de Paris, CNRS, MAP5 UMR 8145, F-75006 Paris, France

Abstract
We propose a nonparametric estimator of the expected discounted penalty function func-

tion in the compound Poisson risk model. We use a projection estimator on the Laguerre basis
and we compute the coefficients using Plancherel theorem. We provide an upper bound on
the MISE of our estimator, and we show it achieves parametric rates of convergence without
needing a bias-variance compromise. Moreover, we compare our estimator with the Laguerre
deconvolution method. We compute an upper bound of the MISE of the Laguerre deconvolu-
tion estimator and we compare it on Sobolev–Laguerre spaces with our estimator. Finally, we
compare these estimators on simulated data.

MSC-2020: 62G05, 62P05, 91G70.
Keywords: nonparametric estimator, rate of estimation, classical risk model, Gerber-Shiu

function, Laguerre series expansion, Fourier inversion.

1 Introduction
1.1 The statistical problem
We consider the classical risk model (compound Poisson model) for the risk reserve process (Ut)t>0
of an insurance company:

Ut = u+ ct−
Nt∑
i=1

Xi, t > 0 (1)

where u > 0 is the initial capital; c > 0 is the premium rate; the claim number process (Nt) is
a homogeneous Poisson process with intensity λ; the claim sizes (Xi) are positive and i.i.d. with
density f and mean µ, independent of (Nt). We denote by τ(u) the ruin time:

τ(u) := inf
{
t > 0

∣∣∣∣∣
Nt∑
i=1

Xi − ct > u

}
∈ R+ ∪ {+∞}

and we make the following assumption to ensure that τ(u) is not almost surely finite.

Assumption 1 (safety loading condition). Let θ := λµ
c , we assume that θ < 1.

To study simultaneously the ruin time, the deficit at ruin, and the surplus level before the ruin,
Gerber and Shiu [1998] introduced the function:

φ(u) := E
[
e−δτ(u)w

(
Uτ(u)−, |Uτ(u)|

)
1τ(u)<+∞

]
, (2)

where δ > 0, and w is a non-negative function of the surplus before the ruin and the deficit at
ruin. This function is called the expected discounted penalty function, but it will also be referred
to as the Gerber–Shiu function in the following. Several quantities of interest can be put in the
form (2), for example:
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1. if δ = 0 and w(x, y) = 1, then φ(u) is the probability of ruin;

2. if δ > 0 and w(x, y) = 1, then φ(u) is the Laplace transform of τ(u);

3. if δ = 0 and w(x, y) = x+ y, then φ(u) is the expected jump size causing the ruin.

For more information concerning the compound Poisson model and the Gerber–Shiu function, see
Asmussen and Albrecher [2010].

Observations and goal In all this article, we suppose that the premium rate c is known, but
the parameters of the aggregate claims process are not, that is (λ, µ, f) is unknown. We suppose
we have observed the process (Ut)t>0 during the interval [0, T ], with T > 0 fixed, so we have access
to the number of claims and their size. Our goal is to recover the Gerber–Shiu function from the
observations (NT ;X1, . . . , XNT ).

Several authors have considered the problem of estimating the Gerber–Shiu function using
nonparametric methods. The first articles had an asymptotic approach: Frees [1986], Croux and
Veraverbeke [1990], Pitts [1994], Politis [2003], and Masiello [2014] constructed nonparametric
estimators of the ruin probability, and established their consistency and their asymptotic normality.

Concerning non-asymptotic approaches, Mnatsakanov, Ruymgaart, and Ruymgaart [2008] in-
troduced a regularized Laplace inversion method to estimate the ruin probability in the compound
Poisson model. Shimizu [2011, 2012] then extended this method to the estimation of the Ger-
ber–Shiu function in more general risk models. However, this method suffers from poor rates of
convergence, and numerical difficulties to compute the estimator.

In their paper, Zhang and Su [2018] introduced a projection estimator on the Laguerre ba-
sis to overcome these drawbacks. The choice of this basis is motivated by the work of Comte,
Cuenod, Pensky, and Rozenholc [2017], where the properties of the Laguerre functions relative to
the convolution product are used to solve a Laplace deconvolution problem. The same method
was then used in more general risk model: Zhang and Su [2019] estimate the Gerber–Shiu func-
tion in a Lévy risk model, where the aggregate claims is a pure-jump Lévy process; Su, Yong,
and Zhang [2019b] estimate the Gerber–Shiu function in the compound Poisson model perturbed
by a Brownian motion; and Su, Shi, and Wang [2019a] study the model where both the income
and the aggregate claims are compound Poisson processes. Recently, Su and Yu [2020] showed
the Laguerre projection estimator of the Gerber–Shiu function in the compound Poisson model is
pointwise asymptotically normal in the case δ = 0.

In this paper, we construct an estimator of the Gerber–Shiu function (2) in the compound Pois-
son model (1). This estimator is also a projection estimator on the Laguerre basis, but we compute
the coefficients using Plancherel theorem instead of using a Laguerre deconvolution method. We
emphasize that our estimator achieves parametric rates of convergence for the MISE regardless of
the regularity of the Gerber–Shiu function, and without needing to find a compromise between the
bias and the variance.

We also improve the previous results concerning the Laguerre deconvolution method. Previous
rates were given in OP, and we propose a non asymptotic bound on the MISE (Mean Integrated
Squared Error) of the estimator. To achieve this goal, we introduce two modified versions of the
Laguerre deconvolution estimator: the first one depends on a truncation parameter, whereas the
second one does not but it is only defined in the case δ = 0.

To control the MISE of the second version of the Laguerre deconvolution estimator, we had
to prove that the primitives of the Laguerre functions were uniformly bounded (see Lemma 3.3).
This result is interesting in itself, but the proof is based on the study of the properties of the
ODE’s satisfied by Laguerre polynomials, and has little to do with this article’s main subject. The
interested reader can find all the details in Appendix B.

Outline of the paper In the remaining part of this section, we introduce the notations and we
give preliminary results on the Gerber–Shiu function. In Section 2, we construct our estimator and
we study its MISE. In Section 3, we introduce two modified version of the Laguerre deconvolution
estimator and we study their MISE. In Section 4, we compute convergence rates of the different
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estimators we considered on Sobolev–Laguerre spaces and also in the case where the claim sizes
are exponentially distributed. In Section 5, we compare numerically the estimators on simulated
data. We gathered all the proofs in Section 7.

1.2 Notations and preliminaries on the Gerber–Shiu function
We use the following notations in the paper:

• N := {0, 1, 2, 3, . . .}, N∗ := N \ {0}, R+ := [0,+∞), and T := {z ∈ C | |z| = 1}.

• “x . y” means x 6 Cy for an absolute constant C > 0.

• x ∧ y := min(x, y) and x ∨ y := max(x, y).

• Lf(s) :=
∫ +∞

0 e−sxf(x) dx is the Laplace transform of f .

• Fψ(ω) :=
∫
R eiωxψ(x) dx is the Fourier transform of ψ.

• Leb(A) is the Lebesgue measure of the set A.

• ‖Am‖op := supx∈Rm\{0}
‖Amx‖`2
‖x‖`2

is the `2-operator norm of the matrix Am ∈ Rm×m.

The key result to estimate the Gerber–Shiu function is the following theorem.

Theorem 1.1 (Gerber and Shiu [1998]). Under Assumption 1, the Gerber–Shiu function satisfies
the equation:

φ = φ ∗ g + h. (3)

where g and h are given by:

g(x) := λ

c

∫ +∞

x

e−ρδ(y−x)f(y) dy, h(u) := λ

c

∫ +∞

u

e−ρδ(x−u)
(∫ +∞

x

w(x, y − x)f(y) dy
)

dx,(4)

and where ρδ is the (unique) non-negative solution of the so-called Lundberg equation:

cs− λ
(
1− Lf(s)

)
= δ. (5)

Remark 1.2. Since Lf(s) ∈ [0, 1], it is easy to see that ρδ ∈
[
δ
c ,
δ+λ
c

]
. Moreover, we know that

ρδ = 0 when δ = 0.
We need to ensure that φ, g and h belong to L2(R+) in order to use a projection estimator.

We see that supx g(x) 6 supx λc P[X > x] 6 λ
c and

∫∞
0 g(x) dx 6 λ

c

∫∞
0 P[X > x] dx = θ, hence

g ∈ L1(R+) ∩ L∞(R+), therefore g ∈ L2(R+). To ensure that h ∈ L2(R+) we make the following
assumption.

Assumption 2.
∫∞

0 (1 + x)
(∫∞
x
w(x, y − x)f(y) dy

)
dx is finite.

Then:

sup
u>0

h(u) 6 λ

c

∫ ∞
0

(∫ ∞
x

w(x, y − x)f(y) dy
)

dx,∫ ∞
0

h(u) du 6
λ

c

∫ ∞
0

x

(∫ ∞
x

w(x, y − x)f(y) dy
)

dx.

Hence, h belongs to L1(R+) ∩ L∞(R+), so h ∈ L2(R+). Integrating Equation (3) yields:

‖φ‖L1 =
∫ ∞

0
φ(u) du =

∫∞
0 h(u) du

1−
∫∞

0 g(x) dx
,

which is finite under Assumption 1 since
∫∞

0 g(x) dx 6 θ < 1. Since φ belongs to L1(R+) and g
belongs to L2(R+), their convolution product belongs to L2(R+), hence φ = φ ∗ g + h belongs to
L2(R+) as well.
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2 The Laguerre–Fourier estimator
We use the Laguerre functions (ψk)k∈N as an orthonormal basis of L2(R+):

∀x ∈ R+, ψk(x) :=
√

2Lk(2x) e−x, Lk(x) :=
k∑
j=0

(
k

j

)
(−x)j

j! . (6)

We choose this basis for several reasons: the support of the Laguerre functions is R+, which is
well suited since the functions we want to estimate are defined on R+; exponential functions (and
more broadly mixture of gamma functions, see the proof of Lemma 3.9 in Mabon [2017]) have
an exponentially small bias in this basis, which is interesting since the claim sizes distribution is
often chosen in these families of distribution; and the Fourier transform of the Laguerre function
is known explicitly:

∀ω ∈ R, Fψk(ω) = (−1)k
√

2 (1 + iω)k

(1− iω)k+1 .

We denote by (ak)k>0 the Laguerre coefficients of φ. If m ∈ N∗, we denote by φm the projection
of φ on the subspace of L2(R+) spanned by the first m Laguerre functions ψ0, . . . , ψm−1, that is:

φm :=
m−1∑
k=0

ak ψk, with ak = 〈φ, ψk〉.

The Laguerre coefficients of φ can be computed using Plancherel theorem:

ak =
〈
φ, ψk

〉
= 1

2π
〈
Fφ,Fψk

〉
.

Taking the Fourier transform in equation (3), we see that Fφ = Fh
1−Fg . Let ĝ, ĥ ∈ L2(R+) be

some estimators of g and h (we provide these estimators later in equation (12)), we estimate the
coefficients of φ by:

âk := 1
2π

〈
F ĥ

1− F̂g
,Fψk

〉
, (7)

where F̂g := (F ĝ)1|F ĝ|6θ0 for some truncation parameter θ0 < 1. The estimator of φ is then:

φ̂m1 :=
m1−1∑
k=0

âk ψk,

where m1 is the dimension of the projection space.

Proposition 2.1. Under Assumptions 1 and 2, if θ < θ0, we have:

‖φ− φ̂m1‖2L2 6 ‖φ−φm1‖2L2 + 2
(1− θ0)2 ‖h− ĥ‖

2
L2 +

2 ‖h‖2L1

(1− θ0)2(1− θ)2

(
1 +

‖g‖2L1

(θ0 − θ)2

)
‖g− ĝ‖2L2 .

Remark 2.2. We emphasize the fact that this result is proven using only two properties: the function
φ satisfies the equation (3) and θ0 > θ > ‖g‖L1 . Hence, it can be applied to other problems where
the target function satisfies an equation of the form (3). For example, it is the case in Zhang and
Su [2019], Su et al. [2019a] and Su et al. [2019b].

We now need to provide good estimators of g and h. We choose to estimate them by projection
on the Laguerre basis too. Let (bk)k>0 and (ck)k>0 be the coefficients of g and h, that is:

g =
+∞∑
k=0

bkψk, with bk := 〈g, ψk〉, (8)

h =
+∞∑
k=0

ckψk, with ck := 〈h, ψk〉. (9)
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By Fubini’s theorem and using equation (4):

bk =
∫ +∞

0
g(x)ψk(x) dx

= λ

c

∫ +∞

0

(∫ +∞

x

e−ρδ(y−x)f(y) dy
)
ψk(x) dx

= λ

c

∫ +∞

0

(∫ y

0
e−ρδ(y−x)ψk(x) dx

)
f(y) dy

= λ

c
E

[∫ X

0
e−ρδ(X−x)ψk(x) dx

]
.

The same calculation for ck yields:

ck = λ

c
E

[∫ X

0

(∫ X

u

e−ρδ(x−u)w(x,X − x) dx
)
ψk(u) du

]
.

We estimate these coefficients by empirical means. However, we first need to estimate ρδ. Since ρδ
is the non-negative solution of the Lundberg equation (5), we estimate it by ρ̂δ the non-negative
solution of the empirical Lundberg equation:

cs− λ̂(1− L̂f(s)) = δ,

where λ̂ := NT
T and L̂f(s) := 1

NT

∑NT
i=1 e−sXi . When δ = 0 we know that ρδ = 0 so we do not need

to estimate it, thus we set ρ̂0 = 0. The estimated coefficients of g and h are:

b̂k = 1
cT

NT∑
i=1

∫ Xi

0
e−ρ̂δ(Xi−x)ψk(x) dx, (10)

ĉk = 1
cT

NT∑
i=1

∫ Xi

0

(∫ Xi

u

e−ρ̂δ(x−u)w(x,Xi − x) dx
)
ψk(u) du, (11)

and the estimators of g and h are:

ĝm2 :=
m2−1∑
k=0

b̂k ψk, ĥm3 :=
m3−1∑
k=0

ĉk ψk, (12)

wherem2 andm3 are the dimensions of the projection spaces. As we did for φ, we denote by gm2 and
hm3 the projections of g and h on the subspaces Span(ψ0, . . . , ψm2−1) and Span(ψ0, . . . , ψm3−1).
Remark 2.3. The dimensions m1,m2,m3 do not have to be the same for the estimation of φ, g and
h. In practice, we will choose different dimensions.

In order to give a bound on the mean integrated squared error of our estimators ĝm2 and ĥm3 ,
we need to make an additional assumption.

Assumption 3. Let W (X) :=
∫X

0

(∫X
u
w(x,X − x) dx

)2
du. If δ = 0, we assume that E[W (X)]

is finite, and if δ > 0, we assume that E[W (X)2] is finite.

Remark 2.4. Assume that w(x, y) . (1 + x)k1(1 + y)k2 for some k1, k2 > 0. Then Assumption 2
holds if X has a finite moment of order 2 + (k1 + k2) and Assumption 3 holds if X has a finite
moment of order 3 + 2(k1 + k2) if δ = 0, and a finite moment of order 6 + 4(k1 + k2) if δ > 0.

Theorem 2.5. Under Assumptions 1, 2 and 3, if δ = 0 then it holds:

E‖g − ĝm2‖2L2 6 ‖g − gm2‖2L2 + λ

c2T
E[X],

E‖h− ĥm3‖2L2 6 ‖h− hm3‖2L2 + λ

c2T
E[W (X)],
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and if δ > 0 then it holds:

E‖g − ĝm2‖2L2 6 ‖g − gm2‖2L2 + C(λ)
c2T

E[X] +
E
[
X2] 1

2

(1− θ)2δ2

 ,

E‖h− ĥm3‖2L2 6 ‖h− hm3‖2L2 + C(λ)
c2T

E[W (X)] +
E
[
W (X)2] 1

2

(1− θ)2δ2

 ,

where C(λ) is a O(λ2).

Remark 2.6. The variance terms do not depend on m2 and m3, so no compromise between the
bias and the variance is needed: we just have to take m2 and m3 as large as possible such that the
bias is smaller than 1/T . See Section 4 for a discussion concerning the choice of m2 and m3 when
the functions g and h belong to a Sobolev–Laguerre space.

Let m1,m2,m3 ∈ N∗, we estimate g by ĝm2 and h by ĥm3 . We plug these estimators in (7) and
we estimate φ by:

φ̂m1,m2,m3 :=
m1−1∑
k=0

〈 F ĥm3

1− F̂gm2

, ψk

〉
ψk,

with F̂gm2 := F ĝm21|F ĝm2 |6θ0 . Combining Proposition 2.1 with Theorem 2.5, we obtain:

Corollary 2.7. Under Assumptions 1, 2 and 3, if θ < θ0 then it holds:

E‖φ− φ̂m1,m2,m3‖2L2 6 ‖φ− φm1‖2L2 + C

(1− θ0)2

(
‖g − gm2‖2L2 + ‖h− hm3‖2L2 + 1

cT

)
,

where C is a constant depending on λ, c, θ, ‖g‖L1 , ‖h‖L1 , E[X], E[W (X)] and θ0 − θ; and also δ,
E[X2], E[W (X)2] if δ > 0.

We want to compare our estimator with the Laguerre deconvolution method. However, there
is no result on the MISE of this method for estimating the Gerber–Shiu function, so we study it
in the next section.

3 The Laguerre deconvolution estimator
For the Laguerre deconvolution method, we need an additional assumption on the coefficients of
g.

Assumption 4. The sequence (bk+1 − bk)k>0 belongs to `1(N).

The reason why the Laguerre basis is well suited for deconvolution on R+ is the following
relation satisfied by the Laguerre functions:

∀k, j ∈ N, ψk ∗ ψj = 1√
2

(ψk+j − ψk+j+1),

see formula 22.13.14 in Abramowitz and Stegun [1972]. The reader interested in the use of the
Laguerre basis for deconvolution problems can read Mabon [2017]. Expanding the renewal equa-
tion (3) on the Laguerre basis, one easily obtains the following relation between the coefficients of
φ, g and h:

∀k ∈ N, ak = (β ∗ a)k + ck,

where the sequence (βk)k>0 is defined by β0 := b0√
2 and βk := bk−bk−1√

2 for k > 1. This relation can
be written in a matrix form: if am := (a0, . . . , am−1)T and cm := (c0, . . . , cm−1)T are the vectors
of the m first coefficients of φ and h, then it holds:

Am × am = cm ⇐⇒ am = A−1
m × cm, (13)
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where Am is the lower triangular Toeplitz matrix:

∀i, j ∈ {0, . . . ,m− 1}, (Am)i,j :=


1− 1√

2b0 if i = j,
1√
2 (bi−j−1 − bi−j) if i > j,

0 else.
(14)

This matrix is invertible if and only if 1 − b0√
2 6= 1, which is the case because b0√

2 6 θ < 1 under
Assumption 1.

Lemma 3.1. Under Assumption 4, we have ‖A−1
m ‖op 6 2

1−θ for all m ∈ N∗.

This lemma is borrowed from Zhang and Su [2018] (Lemma 4.3 in their article). There were missing
elements in their proof, so we give a new proof of this lemma, for the sake of completeness.

The naive Laguerre deconvolution estimator consists in estimating the matrix Am and the
coefficients cm in (13), to obtain an estimation of the coefficients of φ. More precisely, the matrix
Am is estimated by plugging b̂k, defined by (10), in (14):

∀i, j ∈ {0, . . . ,m− 1}, (Âm)i,j :=


1− 1√

2 b̂0 if i = j,
1√
2 (b̂i−j−1 − b̂i−j) if i > j,

0 else.
(15)

This matrix is invertible if and only if b̂0√
2 6= 1, which is almost surely the case since b̂0√

2 =
1
cT

∑NT
i=1(1− e−Xi) is a continuous random variable. The coefficients of φ are estimated by:

âLag0
m := Â−1

m × ĉm, (16)

where ĉm := (ĉ0, . . . , ĉm−1)T . Under Assumptions 1, 2, 3, and 4, Zhang and Su [2018] show that
if E[X2] is finite and if m = o(T ), then ‖φ− φ̂Lag0

m ‖2L2 6 ‖φ− φm‖2L2 +OP
(
m
T

)
.

In the following, we propose two ways inspired by Comte and Mabon [2017] to estimate the
Gerber–Shiu function, using the Laguerre deconvolution method. To obtain a non asymptotic
result on the MISE of the estimator, a cutoff is required when inverting the matrix Âm. Let
θ0 < 1 be a truncation parameter, we estimate A−1

m by:

Ã−1
m,1 := Â−1

m 1∆1
m

where ∆1
m :=

{
‖Â−1

m ‖op 6
2

1− θ0

}
,

and we estimate the coefficients am by âLag1
m := Ã−1

m,1 × ĉm.

Theorem 3.2. Under Assumptions 1, 2, 3, and 4, if θ < θ0 then it holds:

∀m ∈ N∗, E‖φ− φ̂Lag1
m ‖2L2 6 ‖φ− φm‖2L2 + C

m

T
,

where C is a constant depending on λ, c, θ, E[X], E[W (X)] and θ0 − θ; and also δ, E[X2],
E[W (X)2] if δ > 0.

We propose a second way to estimate φ using the Laguerre deconvolution method, in the case
δ = 0. It avoids the use of a truncation parameter θ0, but at the expense of an extra log(m) factor
in the upper bound of the MISE, and it uses an additional independence assumption. We estimate
the Laguerre coefficients of g by (10), that is in this case:

b̂k := 1
cT

NT∑
i=1

Ψk(Xi),

where Ψk(x) :=
∫ x

0 ψk(t) dt. The matrix Am is still estimated by (15).
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Lemma 3.3. The functions Ψk(x) :=
∫ x

0 ψk(t) dt are uniformly bounded.

This lemma is a technical result interesting in itself and we prove it in Appendix B. Using this
theorem, we can control the risk of Âm in operator norm.

Proposition 3.4. If p > 1 and logm > p, then it holds:

E
[
‖Âm −Am‖2pop

]
6 C(p, λ)µp

(
m logm
cT

)p
+ C(p)

(
m logm
cT

)2p
,

where C(p, λ) is a O(λp), and C(p) is a constant depending on p.

This time, we estimate the inverse of the matrix Am by:

Ã−1
m,2 := Â−1

m 1∆2
m
, where ∆2

m :=
{
‖Â−1

m ‖2op 6
cT

m logm

}
,

we estimate the coefficients of φ by âLag2
m := Ã−1

m,2 × ĉm, and we estimate φ by:

φ̂Lag2
m :=

m−1∑
k=0

â
Lag2
k ψk.

To provide an upper bound on the MISE of φ̂Lag2
m , we need Ã−1

m,2 and ĉm to be independent. For
this reason, we assume that we have a second observation set {N ′T ;X ′1, . . . , X ′N ′

T
} identical in law

but independent from the main one1. We use this second set to estimate Ã−1
m,2.

Theorem 3.5. We assume that δ = 0. Under Assumptions 1, 2, 3 and 4, if m logm 6 cT then it
holds:

E‖φ− φ̂Lag2
m ‖2L2 6 ‖φ− φm‖2L2 + C(λ)

cT (1− θ)2

(
E[W (X)]

c
+ ‖φ‖2L2(µ+ µ2)m logm

)
+O

(
1
T 2

)
,

with C(λ) = O(λ ∨ λ2).

Remark 3.6. Contrary to the Laguerre–Fourier method, there is only one bias term with the
Laguerre deconvolution method. However, the variance term is more complicated and a bias-
variance compromise is needed. It leads to non-parametric rates of convergence.

4 Convergence rates of the Laguerre estimators
4.1 Sobolev–Laguerre spaces
To study the bias of a function in the Laguerre basis, we consider the Sobolev–Laguerre spaces.
These functional spaces have been introduced by Bongioanni and Torrea [2009] to study the La-
guerre operator. The connection with the Laguerre coefficients was established later by Comte and
Genon-Catalot [2015].

Definition 4.1. For s > 0, we define the Sobolev–Laguerre ball of radius L > 0 and regularity s
as:

Ws(R+, L) :=
{
v ∈ L2(R+)

∣∣∣∣∣
+∞∑
k=0
〈v, ψk〉2 ks 6 L

}
,

and we define the Sobolev–Laguerre space of regularity s as Ws(R+) :=
⋃
L>0 Ws(R+, L).

By Proposition 7.2 in Comte and Genon-Catalot [2015], when s is a natural number, v ∈Ws(R+) if
and only if v is (s−1) times differentiable, v(s−1) is absolutely continuous, and for all 0 6 k 6 s−1
we have x k+1

2
∑k+1
j=0

(
k+1
j

)
v(j) ∈ L2(R+).

1alternatively, we could split the data {X1, . . . , XNT } in two parts: we use half of the data to estimate Ã−1
m,2,

and the other half to estimate ĉm.
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We are interested in the Sobolev–Laguerre spaces because of the following observation. If v
belongs to a Sobolev–Laguerre ball Ws(R+, L), then its bias is controlled by:

‖v − vm‖2L2 =
+∞∑
k=m
〈v, ψk〉2 =

+∞∑
k=m
〈v, ψk〉2 ksk−s 6 Lm−s.

Combining this upper bound on the bias term with Corollary 2.7, and Theorems 3.2 and 3.5,
we obtain convergence rates for the Laguerre–Fourier estimator and the Laguerre deconvolution
estimators, on Sobolev–Laguerre spaces.

Theorem 4.2. Under Assumptions 1, 2 and 3, if θ < θ0 and if φ ∈Ws1(R+), g ∈Ws2(R+) and
h ∈Ws3(R+), then choosing mi > (cT )

1
1+si for all i ∈ {1, 2, 3} yields:

E‖φ− φ̂m1,m2,m3‖2L2 = O
(

1
cT

)
.

Remark 4.3. If φ, g and h belong to some Sobolev–Laguerre spaces, we can just choose m1 = m2 =
m3 = dcT e and obtain the parametric rate O( 1

cT ) for the Laguerre–Fourier estimator.

Theorem 4.4. We make Assumptions 1, 2, 3 and 4, and we assume that φ ∈Ws(R+).

1. If θ < θ0, then choosing mopt ∝ (cT )
1

1+s yields:

E‖φ− φ̂Lag1
mopt
‖2L2 = O

(
(cT )−

s
1+s

)
.

2. If δ = 0, then choosing mopt ∝ (cT )
1

1+s yields:

E‖φ− φ̂Lag2
mopt
‖2L2 = O

(
(cT )−

s
1+s log(cT )

)
.

Remark 4.5. The Fourier–Laguerre estimator and the Laguerre deconvolution estimator φ̂Lag1
m both

depend on a truncation parameter θ0 that needs to be chosen such that θ < θ0. We see two ways
to ensure that.

1. We can assume that we know some θ0 < 1 such that θ < θ0. Then our convergence rates are
those of Theorems 4.2 and 4.4.

2. We can choose θ0 = 1 − (log T )1/2. Then for T large enough (more precisely T > e(1−θ)2),
our convergence rates of are those of Theorems 4.2 and 4.4 multiplied by log(T ).

In our simulations, we chose the first way.

4.2 The exponential case
In this section, we want to compute the convergence rate of the estimators, in the exponential
case: X ∼ Exp(1/µ). This distribution is often considered in risk theory and closed forms of
the Gerber–Shiu function are available in this case. Indeed, the Gerber–Shiu functions we are
interested in (see Section 1) are given by:

φ(u) =



θ exp
(
−1− θ

µ
u

)
(ruin probability),

θ

1 + µρδ
exp

(
−
[

1− θ
µ

+ ρδ −
δ

c

]
u

)
(Laplace transform of the ruin time),

µ(1 + 2θ) exp
(
−1− θ

µ
u

)
− µ exp

(
−u
µ

)
(jump size causing the ruin).

(17)

These formulas are obtained by Laplace inversion, see Asmussen and Albrecher [2010], chapter XII.
We use the following lemma to compute the bias terms of the functions φ, g and h.
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Lemma 4.6. Let C, γ be positive numbers and let F (x) = C exp(−γx)1R+(x). The Laguerre
coefficients of F are given by:

〈F,ψk〉 = C
√

2
γ + 1

(
γ − 1
γ + 1

)k
.

Hence if m > 0 we have:
+∞∑
k=m
〈F,ψk〉2 = C2

2γ

(
γ − 1
γ + 1

)2m
.

Proposition 4.7. If the density of X is f(x) = 1
µe−

x
µ , then the bias term of φ is given by:

‖φ− φm‖2L2 6 Le−rm

with L and r given by:

1. Ruin probability: L = θ2

2γ , r = 2 log
∣∣∣γ+1
γ−1

∣∣∣ and γ = 1−θ
µ .

2. Laplace transform of the ruin time: L = θ2

2γ(1+µρδ)2 , r = 2 log
∣∣∣γ+1
γ−1

∣∣∣ and γ = 1−θ
µ + ρδ − δ

c .

3. Jump size causing the ruin: L = µ3 (1+2θ)2

1−θ , r = 2 log
(∣∣∣ 1−θ+µ1−θ−µ

∣∣∣ ∧ ∣∣∣ 1+µ
1−µ

∣∣∣).
Combining this Proposition with Theorems 3.2 and 3.5, we easily obtain convergence rates for

the Gerber–Shiu functions we are interested in.

Theorem 4.8. We assume that the density of X is f(x) = 1
µe−

x
µ , we make Assumptions 1, 2, 3

and 4, and we assume that the bias term of φ decreases as:

‖φ− φm‖2L2 6 Le−rm.

1. If θ < θ0, then choosing mopt = d 1
r log(cT )e yields:

E‖φ− φ̂Lag1
mopt
‖2 = O

(
log(cT )
cT

)
.

2. If δ = 0, then choosing mopt = d 1
r log(cT )e yields:

E‖φ− φ̂Lag2
mopt
‖2L2 = O

(
log(cT ) log log(cT )

cT

)
.

For the Laguerre–Fourier estimator, we also need to know the decreasing rate of the bias term
of g and h. For the ruin probability, the Laplace transform of τ , and the jump size causing
the ruin, direct calculations show that g and h are given by a positive multiple of e−x/µ. Thus,
Lemma 4.6 yields that their bias term is less than exp(−r′m), with r′ := 2 log| 1+µ

1−µ |. Together with
Corollary 2.7, we obtain the convergence rates of the Laguerre–Fourier estimator.

Theorem 4.9. If the density of X is f(x) = 1
µe−

x
µ , under Assumptions 1, 2 and 3, if θ < θ0 and

if the bias term of φ decreases as:

‖φ− φm‖2L2 6 Le−rm,

then choosing m1 > d 1
r log(cT )e and m2,m3 > d 1

r′ log(cT )e with r′ := 2 log| 1+µ
1−µ | yields:

E‖φ− φ̂m1,m2,m3‖2L2 = O
(

1
cT

)
.
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5 Numerical comparison
In this section, we compare the performance on simulated data of the Laguerre–Fourier estimator
(see Section 2) and the Laguerre deconvolution estimators (see Section 3). We consider three types
of Gerber–Shiu functions:

1. φ(1)(u) = P[τ(u) <∞] the ruin probability;

2. φ(2)(u) = E[(Uτ(u)− + |Uτ(u)|)1τ(u)<∞] the expected claim size causing the ruin;

3. φ(3)(u) = E[e−δτ(u)1τ(u)<∞] the Laplace transform of the ruin time, for δ = 0.1.

We also consider 3 sets of parameters:

1. X follows an exponential distribution, λ = 1, µ = 1, c = 1.5. In this setting, θ ≈ 0.67.

2. X follows an exponential distribution, λ = 1.25, µ = 2, c = 3. In this setting, θ ≈ 0.83

3. X follows a Γ(2, µ2 ) distribution, λ = 1.25, µ = 2, c = 3. In this setting, θ ≈ 0.83.

Model selection Each estimator we consider depends on one or several parameters that need
to be chosen. The Laguerre–Fourier estimator and the Laguerre deconvolution estimator φ̂Lag1

m

depend on a truncation parameter θ0, which needs to be chosen such that θ < θ0. We choose
θ0 = 0.95 in our simulations.

• The Laguerre–Fourier estimator depends on four parameters: m1,m2 andm3, the dimensions
of the projection spaces for the functions φ, g and h, and θ0 the truncation parameter in the
estimation of F̂g. As said in Remark 4.3, we can choose m1 = m2 = m3 = dcT e, no selection
procedure is required. Still, we propose a model reduction procedure for the choice of m2 and
m3, that we describe in Appendix A.

• The naive Laguerre deconvolution estimator φ̂Lag0
m , defined by (16), depends on one param-

eter: m, the dimension of the projection space for φ. However, there is no model selection
procedure for m. In their numerical section, Zhang and Su [2018] only consider (as we do)
Gerber–Shiu functions with exponential decay; hence the bias term also decays with expo-
nential rate. Using this fact, they chose m = b5T 1/10c. We make the same choice in our
simulations and we write φ̂ZS this estimator.

• The Laguerre deconvolution estimators φ̂Lag1
m and φ̂

Lag2
m also depend on m. For i ∈ {1, 2},

we choose m̂Lagi as the minimizer of a penalized criterion:

m̂Lagi ∈ arg min
m∈Mi

{
−‖φ̂Lagi

m ‖2L2 + κi peni(m)
}

(18)

where the model collections are:

M1 :=
{

1 6 m 6M

∣∣∣∣ ‖Â−1
m ‖op 6

1
1− θ0

}
M2 :=

{
1 6 m 6M

∣∣∣∣ ‖Â−1
m ‖2op 6

cT

m log(m)

}
withM = dcT e∧500 (we do not compute more than 500 coefficients, because of computation
time).
In the following, if F (X) is a function of X, we write F (X) := 1

NT

∑NT
i=1 F (Xi) its empirical

mean from the sample {X1, . . . , XNT }. For the penalty terms, we choose empirical versions
of the variance terms in Theorems 3.2 and 3.5:

pen1(m) := 1
(1− θ0)2

(
‖φ̂Lag1

m ‖2L2mV̂g + V̂h

)
pen2(m) := (λ̂ ∨ λ̂2)

(
W (X)
c

+ ‖φ̂Lag1
m ‖2L2

(
X ∨X2)

m log(m)
)
,
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with:

V̂g :=


λ̂
c2TX if δ = 0,

λ̂2

c2T

(
X +

(
X2
)1/2

δ(1−θ0)2

)
if δ > 0,

V̂h :=


λ̂
c2TW (X) if δ = 0,

λ̂2

c2T

(
W (X) +

(
W (X)2

)1/2

δ(1−θ0)2

)
if δ > 0.

The constants κ1 and κ2 are constants we calibrated on preliminary simulations. We choose:

– κ1 = 0.01, κ2 = 0.01 for the ruin probability;
– κ1 = 0.1, κ2 = 1 for the expected claim size causing the ruin;
– κ1 = 10−8 for the Laplace transform of the ruin time, δ = 0.1.

There is no constant κ2 in the last case because the Laguerre deconvolution estimator φ̂Lag2
m

is defined only if δ = 0.
We write φ̂Lag1 := φ̂

Lag1
m̂Lag1 and φ̂Lag2 := φ̂

Lag2
m̂Lag2 in the following.

MISE calculation We compare the estimators by looking at their Mean Integrated Squared
Error (MISE): E‖φ− φ̂‖2L2 . We compute the norm ‖·‖L2 using Romberg’s method, and we compute
the expectation by an empirical mean over n = 200 paths of the process (Ut)t∈[0,T ]. We also
compute a 95% confidence interval for the MISE. We have two goals in this section:

1. To compare the performance of our Laguerre–Fourier estimator with the Laguerre deconvo-
lution estimators.

2. To see if the model selection procedures (18) for the Laguerre deconvolution estimators lead
to the same performance than the naive choice m = b5T 1/10c.

Results We display our results in Tables 1, 2 and 3.
Concerning the estimation of the ruin probability (Table 1), we see that all the estimators

perform well with the first set of parameter (exponential distribution, θ = 0.67). However, with the
two other sets of parameters (exponential distribution and Gamma(2) distribution, θ = 0.83), the
difference is clear: the Laguerre–Fourier estimator has the smallest risk, followed by the estimator
of Zhang and Su [2018], and the Laguerre deconvolution estimators come last. We notice that
φ̂Lag2 seems to be better than φ̂Lag1 in this case.

Concerning the estimation of the expected jump size causing the ruin (Table 2), the difference
is even clearer. With the first set of parameters, we see that the Laguerre–Fourier is better for
small sample size (E[NT ] = 100), but equivalent to the other estimators for larger sample sizes.
We also notice that the estimator φ̂ZS and φ̂Lag2 have the same risk. With the two other sets of
parameters, we find again that the Laguerre–Fourier estimator is better than the estimator φ̂ZS,
which is better than the Laguerre deconvolution estimators. This time, we see that φ̂Lag1 has
better performances than φ̂Lag2 .

Concerning the estimation of Laplace transform of the ruin time (Table 3), we see no difference
between the MISE of the Laguerre–Fourier estimator and the Laguerre deconvolution estimators.

To conclude, we can say that our Laguerre–Fourier estimator has better performances than
the Laguerre deconvolution estimators on simulated data, even in the exponential case where they
have theoretically the same MISE (up to a log factor). Furthermore, the Laguerre deconvolution
estimators with the model selection procedure (18) fail to match the performance of the estimator
of Zhang and Su [2018], for which we choose the parameter m knowing the bias decay rate of φ,
in most cases.

6 Conclusion
Using a projection estimator on the Laguerre basis, and computing the coefficients with Fourier
transforms, we constructed an estimator of the Gerber–Shiu function that achieves parametric
rates of convergence, without needing a model selection procedure. It is worth noticing that our
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Parameters Estimator E[NT ] = 100 E[NT ] = 200 E[NT ] = 400

LagFou
0.14 0.053 0.022

[0.07, 0.21] [0.039, 0.067] [0.017, 0.027]
m1 = 150 m1 = 300 m1 = 500

ZS
0.23 0.053 0.022

X ∼ Exp(1) [0.02, 0.44] [0.039, 0.068] [0.017, 0.028]
λ = 1 m = 8 m = 9 m = 10
c = 1.5

LagDec1
0.25 0.055 0.024

θ = 0.67 [0.01, 0.48] [0.042, 0.069] [0.019, 0.029]
m̂ = 3.3 m̂ = 3.8 m̂ = 4.2

LagDec2
0.23 0.053 0.023

[0.02, 0.45] [0.039, 0.068] [0.017, 0.028]
m̂ = 6.0 m̂ = 6.5 m̂ = 7.0

LagFou
0.95 0.67 0.43

[0.80, 1.09] [0.53, 0.80] [0.31, 0.55]
m1 = 240 m1 = 480 m1 = 500

ZS
1.57 1.02 0.54

X ∼ Exp(1/2) [1.26, 1.89] [0.74, 1.30] [0.46, 0.61]
λ = 1.25 m = 8 m = 9 m = 9
c = 3

LagDec1
8.51 3.82 0.72

θ = 0.83 [5.07, 11.95] [1.57, 6.07] [0.36, 1.07]
m̂ = 11.0 m̂ = 12.8 m̂ = 14.4

LagDec2
2.96 1.94 0.64

[2.11, 3.82] [1.08, 2.80] [0.36, 0.92]
m̂ = 14.2 m̂ = 18.1 m̂ = 21.8

LagFou
0.64 0.46 0.30

[0.52, 0.77] [0.37, 0.56] [0.22, 0.38]
m1 = 240 m1 = 480 m1 = 500

ZS
1.77 0.62 0.30

X ∼ Γ(2, 1/4) [1.07, 2.47] [0.45, 0.78] [0.23, 0.36]
λ = 1.25 m = 8 m = 9 m = 9
c = 3

LagDec1
7.22 1.71 0.45

θ = 0.83 [4.25, 10.19] [0.87, 2.56] [0.21, 0.70]
m̂ = 9.3 m̂ = 10.6 m̂ = 11.6

LagDec2
2.71 1.07 0.41

[1.80, 3.62] [0.66, 1.47] [0.22, 0.60]
m̂ = 12.1 m̂ = 15.7 m̂ = 18.0

Table 1: Ruin Probability. For two sets of parameters, we compare the three estimators of the
ruin probability: the Laguerre–Fourier estimator (LagFou), the estimator of Zhang and Su [2018]
(ZS), and the Laguerre deconvolution estimators (LagDec1 and LagDec2). In each case, we display
the estimation of the MISE over 200 samples with a 95% confidence interval and the model used
(m̂ is the mean selected model in the case of the Laguerre deconvolution estimators).
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Parameters Estimator E[NT ] = 100 E[NT ] = 200 E[NT ] = 400

LagFou
1.71 0.60 0.34

[1.09, 2.32] [0.46, 0.73] [0.27, 0.40]
m1 = 150 m1 = 300 m1 = 500

ZS
1.80 0.62 0.34

X ∼ Exp(1) [1.07, 2.53] [0.47, 0.77] [0.27, 0.41]
λ = 1 m = 8 m = 9 m = 10
c = 1.5

LagDec1
1.41 0.84 0.44

θ = 0.67 [1.19, 1.64] [0.74, 0.93] [0.39, 0.50]
m̂ = 1.9 m̂ = 2.2 m̂ = 2.8

LagDec2
1.86 0.64 0.35

[1.11, 2.61] [0.49, 0.78] [0.28, 0.42]
m̂ = 3.7 m̂ = 4.1 m̂ = 4.6

LagFou
46.2 28.1 20.5

[30.0, 62.3] [21.7, 34.5] [15.1, 25.8]
m1 = 240 m1 = 480 m1 = 500

ZS
96.3 48.0 27.9

X ∼ Exp(1/2) [62.4, 130.2] [31.3, 64.6] [23.0, 32.7]
λ = 1.25 m = 8 m = 9 m = 9
c = 3

LagDec1
77.5 56.3 38.9

θ = 0.83 [71.6, 83.5] [45.1, 67.4] [29.7, 48.1]
m̂ = 3.0 m̂ = 4.9 m̂ = 7.1

LagDec2
197.7 96.7 48.5

[115.1, 280.3] [47.4, 146.0] [27.5, 69.6]
m̂ = 9.7 m̂ = 12.5 m̂ = 14.6

LagFou
11.7 9.2 6.2

[9.4, 14.0] [7.5, 10.9] [4.1, 8.3]
m1 = 240 m1 = 480 m1 = 500

ZS
18.5 13.6 5.9

X ∼ Γ(2, 1/4) [12.0, 25.0] [10.1, 17.1] [4.6, 7.2]
λ = 1.25 m = 8 m = 9 m = 9
c = 3

LagDec1
19.2 15.0 8.4

θ = 0.83 [18.2, 20.2] [13.1, 17.0] [7.1, 9.7]
m̂ = 2.8 m̂ = 4.3 m̂ = 5.9

LagDec2
28.2 24.6 8.3

[19.4, 37.1] [16.5, 32.7] [5.6, 11.1]
m̂ = 7.8 m̂ = 10.0 m̂ = 11.3

Table 2: Expected claim size causing the ruin. For two sets of parameters, we compare
the three estimators of the expected jump size causing the ruin: the Laguerre–Fourier estimator
(LagFou), the estimator of Zhang and Su [2018] (ZS), and the Laguerre deconvolution estimators
(LagDec1 and LagDec2). In each case, we display the estimation of the MISE over 200 samples
with a 95% confidence interval and the model used (m̂ is the mean selected model in the case of
the Laguerre deconvolution estimators).
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Parameters Estimator E[NT ] = 100 E[NT ] = 200 E[NT ] = 400

LagFou
2.50 1.09 0.64

[1.91, 3.09] [0.87, 1.31] [0.52, 0.77]
X ∼ Exp(1) m1 = 150 m1 = 300 m1 = 500

λ = 1
ZS

2.50 1.10 0.66
c = 1.5 [1.93, 3.07] [0.88, 1.33] [0.53, 0.79]
θ = 0.67 m = 8 m = 9 m = 10

LagDec1
2.52 1.11 0.67

[1.95, 3.08] [0.89, 1.34] [0.54, 0.80]
m̂ = 4.2 m̂ = 4.6 m̂ = 4.9

LagFou
11.81 5.60 2.51

[9.26, 14.36] [4.49, 6.72] [2.04, 2.98]
X ∼ Exp(1/2) m1 = 240 m1 = 480 m1 = 500
λ = 1.25

ZS
12.47 6.13 3.30

c = 3 [10.53, 14.41] [5.07, 7.19] [2.86, 3.75]
θ = 0.83 m = 8 m = 9 m = 9

LagDec1
13.22 5.82 2.65

[10.61, 15.84] [4.57, 7.06] [2.15, 3.14]
m̂ = 10.2 m̂ = 11.2 m̂ = 12.4

LagFou
10.26 4.09 2.01

[8.08, 12.45] [3.28, 4.91] [1.57, 2.46]
X ∼ Γ(2, 1/4) m1 = 240 m1 = 480 m1 = 500
λ = 1.25

ZS
9.76 4.16 2.20

c = 3 [8.07, 11.45] [3.36, 4.96] [1.77, 2.63]
θ = 0.83 m = 8 m = 9 m = 9

LagDec1
10.39 4.15 2.05

[8.39, 12.38] [3.29, 5.00] [1.59, 2.52]
m̂ = 8.8 m̂ = 9.5 m̂ = 10.3

Table 3: Laplace transform, δ = 0.1. For two sets of parameters, we compare three estimators of
the Laplace transform of the ruin time: the Laguerre–Fourier estimator (LagFou), the estimator of
Zhang and Su [2018] (ZS) and the Laguerre deconvolution estimator (LagDec1). In each case, we
display the estimation of the MISE×102 over 200 samples with a 95% confidence interval and the
model used (m̂ is the mean selected model in the case of the Laguerre deconvolution estimator).
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results are non-asymptotic and concern the MISE of the estimator. In comparison, the Laguerre
deconvolution estimators have slower rates of convergence and necessitate a model selection pro-
cedure in practice. The better performances of our procedure are confirmed by a numerical study,
on simulated data.

Knowing that the Laguerre deconvolution method does not achieve the best rate of convergence
in the compound Poisson model is important. Indeed, this method is used to estimate the Gerber–
Shiu function in more general models, see Zhang and Su [2019], Su et al. [2019a] and Su et al.
[2019b]. These papers have one thing in common: they all want to estimate a function φ that
satisfies an equation of the form φ = φ ∗ g + h, with g and h functions that depend on the
specificity of each problem. If we applied the procedure described in the beginning of Section 2,
we could obtain an estimator that would achieve the same rate of convergence as the estimators of
g and h (see Remark 2.2). Hence the Laguerre deconvolution method used in these papers is not
optimal since a factor m appears in the variance term in the construction step of φ̂m from ĝm and
ĥm.

7 Proofs
Proof of Proposition 2.1. By Pythagoras theorem, ‖φ− φ̂m‖2L2 = ‖φ−φm‖2L2 + ‖φm− φ̂m‖2L2 . Let
Πm be the projector on Span(Fψ0, . . . ,Fψm−1). Since ‖Fψk‖2 = 2π, we get:

‖φm − φ̂m‖2L2 =
m−1∑
k=0

(âk − ak)2

= 1
(2π)2

m−1∑
k=0

〈
F ĥ

1− F̂g
− Fh

1−Fg ,Fψk

〉2

= 1
2π

∥∥∥∥∥Πm

(
F ĥ

1− F̂g
− Fh

1−Fg

)∥∥∥∥∥
2

L2

6
1

2π

∥∥∥∥∥ F ĥ
1− F̂g

− Fh
1−Fg

∥∥∥∥∥
2

L2

. (19)

Then since |F̂g| 6 θ0 by definition, and |Fg| 6 ‖g‖L1 6 θ, we obtain:∥∥∥∥∥ F ĥ
1− F̂g

− Fh
1−Fg

∥∥∥∥∥
2

L2

6 2

∥∥∥∥∥ F ĥ
1− F̂g

− Fh
1− F̂g

∥∥∥∥∥
2

L2

+ 2

∥∥∥∥∥ Fh
1− F̂g

− Fh
1−Fg

∥∥∥∥∥
2

L2

6
2

(1− θ0)2 ‖F ĥ−Fh‖
2
L2 +

2‖h‖2L1

(1− θ0)2(1− θ)2 ‖F̂g −Fg‖
2
L2 . (20)

To control the last term, we decompose according to the set {|F ĝ| 6 θ0} and its complement:

‖F̂g −Fg‖2L2 6 ‖F ĝ −Fg‖2L2 + ‖g‖2L1 Leb({|F ĝ| > θ0}).

Thus if θ < θ0, then {|F ĝ| > θ0} ⊆ {|F ĝ −Fg| > θ0 − θ}, therefore Markov inequality yields:

‖F̂g −Fg‖2L2 6 ‖F ĝ −Fg‖2L2 +
‖g‖2L1

(θ0 − θ)2 ‖F ĝ −Fg‖
2
L2 . (21)

Finally, gathering (19), (20) and (21), and using Plancherel theorem yield the desired result.

7.1 Proof of Theorem 2.5
We start with some preliminary lemmas.
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Lemma 7.1. Let Y1, . . . , Yn be i.i.d non-negative random variables. We denote by L(s) := E[e−sY1 ]
their Laplace transform and we denote by L̂(s) := 1

n

∑n
i=1 e−sYi the empirical Laplace transform.

Then for p > 1, we have:

E
[
sup
s>0

∣∣∣L̂(s)− L(s)
∣∣∣2p] 6 p!

2p−1np
.

Proof. Let F̂ (x) := 1
n

∑n
i=1 1{Yi6x} be the empirical c.d.f. of the Yi’s, and let F (x) := P[Y 6 x] be

their c.d.f. We notice that for s > 0:∫ +∞

0
se−sxF̂ (x) dx = 1

n

n∑
i=1

∫ +∞

0
se−sx1{Yi6x} dx = 1

n

n∑
i=1

e−sXi =: L̂(s),

and by the same argument, L(s) =
∫ +∞

0 se−sxF (x) dx. Thus:

sup
s>0

∣∣∣L̂(s)− L(s)
∣∣∣ 6 sup

s>0

∫ +∞

0
se−sx

∣∣∣F̂ (x)− F (x)
∣∣∣dx 6 ‖F̂ − F‖∞.

We take the expectation and we get:

E
[
sup
s>0

∣∣∣L̂(s)− L(s)
∣∣∣2p] 6 E

[
‖F̂ − F‖2p∞

]
= 2p

∫ +∞

0
t2p−1 P

[
‖F̂ − F‖∞ > t

]
dt. (22)

By Massart [1990], P
[√

n‖F̂ − F‖∞ > x
]
6 2e−2x2 , so by setting t = x/

√
n in (22), we obtain:

E
[
sup
s>0

∣∣∣L̂(s)− L(s)
∣∣∣2p] 6 2p

np

∫ +∞

0
x2p−12e−2x2

dx = 2p
np

∫ +∞

0
up−1e2u du = p!

np 2p−1 .

Lemma 7.2. Let Z ∼ P(λ) and mj(λ) := E[(Z −λ)j ] be the j-th central moment of Z. Then, for
all r > 2 we have:

mr(λ) = λ

r−2∑
j=0

(
r − 1
j

)
mj(λ).

Proof. Let L(λ, t) := eλ(et−t−1) = E[et(Z−λ)] and ϕ(t) := et − t− 1. Then mr(λ) = ∂rL
∂tr (λ, 0). By

Leibniz’s rule:

∂rL
∂tr

(λ, t) = ∂r−1

∂tr−1

(
λϕ′(t)L(λ, t)

)
= λ

r−1∑
j=0

(
r − 1
j

)
∂j L
∂tj

(λ, t)ϕ(r−j)(t).

Taking t = 0 gives the result since ϕ′(0) = 0 and ϕ(k)(0) = 1 if k > 2.

Corollary 7.3. The central moments m2r(λ) and m2r+1(λ) are polynomials of degree r in λ.

The next proposition provides an upper bound on the Lp-risk of ρ̂δ.

Proposition 7.4. Under Assumption 1, for p > 1, we have:

E
[
(ρ̂δ − ρδ)2p] 6 C(p, λ)

c2p(1− θ)2pT p
,

where C(p, λ) is a O(λp).

Proof. By definition, ρδ is a solution of the Lundberg equation, so it is a zero of the function:

`δ(s) := cs− (λ+ δ) + λLf(s).

The estimator ρ̂δ is then a zero of the function:

ˆ̀
δ(s) := cs− (λ̂+ δ) + λ̂ L̂f(s).
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We use a Taylor–Lagrange expansion:
ˆ̀
δ(ρ̂δ) = 0 = `δ(ρδ) = `δ(ρ̂δ) + `′δ(z)(ρδ − ρ̂δ),

where z is between ρδ and ρ̂δ.

|`′δ(z)| =
∣∣∣∣c− λ ∫ +∞

0
xe−zxf(x) dx

∣∣∣∣ > c− λ
∫ +∞

0
xf(x) dx = c− λµ > 0,

under the safety loading condition. Thus:

|ρδ − ρ̂δ| 6
1

c− λµ

∣∣∣ˆ̀δ(ρ̂δ)− `δ(ρ̂δ)∣∣∣
= 1
c(1− θ)

∣∣∣λ̂(L̂f(ρ̂δ)− L(ρ̂δ)
)

+
(
λ̂− λ

)(
1− Lf(ρ̂δ)

)∣∣∣
6

1
c(1− θ)

(∣∣λ̂∣∣∥∥L̂f − Lf∥∥∞ + 2
∣∣λ̂− λ∣∣)

E
[
(ρ̂δ − ρδ)2p] 6 1

c2p(1− θ)2p

(
22p−1E

[
λ̂2p‖L̂f − Lf‖2p∞

]
+ 24p−1E

[∣∣λ̂− λ∣∣2p]) .
For the second term, we use Corollary 7.3: E|λ̂ − λ|2p = E|NT−λT |2p

T 2p = O(λp)
Tp . For the first term,

we apply Lemma 7.1 conditional to NT :

E
[
λ̂2p‖L̂f − Lf‖2p∞

]
6 E

[
C(p) λ̂

2p

Np
T

]
= C(p)

T p
E
[
λ̂p
]

= O(λp)
T p

.

Finally:
E
[
(ρ̂δ − ρδ)2p] 6 C(p, λ)

c2p(1− θ)2pT p
,

with C(p, λ) = O(λp).

Now, we can prove Theorem 2.5.

Proof of Theorem 2.5. By Pythagoras theorem:

E‖g − ĝm2‖2L2 = ‖g − gm2‖2L2 + E‖gm2 − ĝm2‖2L2 = ‖g − gm2‖2L2 +
m2−1∑
k=0

E
[
(b̂k − bk)2

]
,

E‖h− ĥm3‖2L2 = ‖h− hm3‖2L2 + E‖hm3 − ĥm3‖2L2 = ‖h− hm3‖2L2 +
m3−1∑
k=0

E
[
(ĉk − ck)2],

hence we need to control the variance terms
∑m2−1
k=0 E[(b̂k − bk)2] and

∑m3−1
k=0 E[(ĉk − ck)2].

Using equations (4.17) to (4.21) and (4.10) to (4.14) in Zhang and Su [2018], we can obtain
equations (28) and (29) below. Still, we give the proofs of these equations for the sake of com-
pleteness.

We notice that b̂k and ĉk (defined by (10) and (11)) can be written as:

1
cT

NT∑
i=1

∫ +∞

0
F (u,Xi, ρ̂δ)ψk(u) du,

and that the coefficients bk and ck (defined by (8) and (9)) can be written as:

E

[
1
cT

NT∑
i=1

∫ +∞

0
F (u,Xi, ρδ)ψk(u) du

]
,

where F is given by:

F (u,X, ρ) :=
{

e−ρ(X−u)1X>u for the coefficients of g,∫X
u

e−ρ(X−x)w(x,X − x) dx1X>u for the coefficients of h.
(23)

18



Thus, we need to give an upper bound on quantities of the form:

Vm :=
m−1∑
k=0

E

( 1
cT

NT∑
i=1

∫ +∞

0
F (u,Xi, ρ̂δ)ψk(u) du− E

[
1
cT

NT∑
i=1

∫ +∞

0
F (u,Xi, ρδ)ψk(u) du

])2.
(24)

The bound on Vm is based on the following decomposition:

1
cT

NT∑
i=1

∫ +∞

0
F (u,Xi, ρ̂δ)ψk(u) du− E

[
1
cT

NT∑
i=1

∫ +∞

0
F (u,Xi, ρδ)ψk(u) du

]
= Zk + ∆k (25)

where:

Zk := 1
cT

(
NT∑
i=1

∫ +∞

0
F (u,Xi, ρ̂δ)ψk(u) du− E

[
NT∑
i=1

∫ +∞

0
F (u,Xi, ρ̂δ)ψk(u) du

])

∆k := 1
cT

NT∑
i=1

∫ +∞

0

[
F (u,Xi, ρ̂δ)− F (u,Xi, ρδ)

]
ψk(u) du.

Let us notice that if δ = 0, then ρ̂δ = ρδ = 0, so ∆k = 0 and the decomposition reduces to Zk.

• Bound on
∑m−1
k=0 E

[
Z2
k

]
. This bound is obtained by a projection argument:

m−1∑
k=0

E
[
Z2
k

]
=
m−1∑
k=0

Var
(

1
cT

NT∑
i=1

∫ +∞

0
F (u,Xi, ρδ)ψk(u) du

)

=
m−1∑
k=0

λ

c2T
E

[(∫ +∞

0
F (u,X, ρδ)ψk(u) du

)2]

6
λ

c2T
E
[∫ +∞

0
F (u,X, ρδ)2 du

]
,

where the last inequality comes from the fact that (ψk)k>0 is an orthonormal basis of L2(R+).
From (23), we see that:

λ

c2T
E
[∫ +∞

0
F (u,X, ρδ)2 du

]
6

{
λ
c2T E[X] for the coefficients of g,
λ
c2T E[W (X)] for the coefficients of h.

(26)

where W (X) is defined in Assumption 3. In the δ = 0 case, this gives the desired results.

• Bound on
∑m−1
k=0 ∆2

k. We use a projection argument again:

m−1∑
k=0

∆2
k 6

m−1∑
k=0

NT
c2T 2

NT∑
i=1

(∫ +∞

0

[
F (u,Xi, ρ̂δ)− F (u,Xi, ρδ)

]
ψk(u) du

)2

6
λ̂

c2T

NT∑
i=1

∫ +∞

0

∣∣F (u,Xi, ρ̂δ)− F (u,Xi, ρδ)
∣∣2 du,

where λ̂ := NT
T . By Remark 1.2, we know that ρδ ∈ [ δc ,

δ+λ
c ] and ρ̂δ ∈ [ δc ,

δ+λ̂
c ], so by the

mean value theorem:∣∣F (u,Xi, ρ̂δ)− F (u,Xi, ρδ)
∣∣ 6 ∣∣ρ̂δ − ρδ∣∣ sup

ρ> δ
c

∣∣∣∣∂F∂ρ (u,Xi, ρ)
∣∣∣∣.

Since the function te−ρt1t>0 achieves its maximum at t = 1
ρ , we see that:

sup
ρ> δ

c

∣∣∣∣∂F∂ρ (u,Xi, ρ)
∣∣∣∣ 6

{
c
eδ1Xi>u for the coefficients of g,
c
eδ
∫Xi
u

w(x,Xi − x) dx1Xi>u for the coefficients of h.
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Thus,
m−1∑
k=0

∆2
k 6

λ̂|ρ̂δ − ρδ|2

e2δ2 ×

{
1
T

∑NT
i=1Xi for the coefficients of g,

1
T

∑NT
i=1W (Xi) for the coefficients of h.

(27)

Using the decomposition (25) in (24), we get Vm 6 2
∑m−1
k=0 E[Z2

k ] + 2
∑m−1
k=0 E[∆2

k]. Combining
(26) and (27) yields:

E‖ĝm2 − gm2‖2L2 6 2 λ

c2T
E[X] + 2E

[
λ̂|ρ̂δ − ρδ|2

e2δ2
1
T

NT∑
i=1

Xi

]
, (28)

E‖ĥm3 − hm3‖2L2 6 2 λ

c2T
E[W (X)] + 2E

[
λ̂|ρ̂δ − ρδ|2

e2δ2
1
T

NT∑
i=1

W (Xi)
]
. (29)

We apply Hölder’s inequality on the second term in (28) and we use Proposition 7.4:

E

[
λ̂|ρ̂δ − ρδ|2

1
T

NT∑
i=1

Xi

]
6 E[λ̂4]1/4 E

[
|ρ̂δ − ρδ|8

]1/4 E
( 1

T

NT∑
i=1

Xi

)21/2

6
C(λ)

c2(1− θ)2T
E

( 1
T

NT∑
i=1

Xi)
)21/2

,

with C(λ) = O(λ2). We need to evaluate this last expectation:

E

( 1
T

NT∑
i=1

Xi

)2 6 E

[
NT
T 2

NT∑
i=1

X2
i

]
= E

[
N2
T

T 2

]
E[X2] =

(
λ

T
+ λ2

)
E[X2].

Thus, we obtain:
E‖ĝm − gm‖2L2 6 2 λ

c2T
E[X] + 2 C(λ)

c2T (1− θ)2δ2E[X2]1/2

with C(λ) = O(λ2). We make the same reasoning for h, replacing Xi by W (Xi).

7.2 Proofs of Section 3
Let us recall some facts about Toeplitz matrices; the interested reader can find more details in the
book of Böttcher and Grudsky [2000]. Given (αn)n∈Z a sequence of complex numbers, a Toeplitz
matrix is an infinite matrix of the form:

α0 α−1 α−2 · · ·
α1 α0 α−1 · · ·
α2 α1 α0 · · ·
· · · · · · · · · · · ·

 . (30)

The classical result from O. Toeplitz says that this matrix induces a bounded operator on `2(N) if
and only if (αn)n∈Z are the Fourier coefficients of some function α ∈ L∞(T), where T denotes the
complex unit circle. We denote both the matrix (30) and its induced operator on `2(N) by T(α),
the function α being called the symbol of the Toeplitz matrix. Finally, if m ∈ N∗ and if T(α) is a
Toeplitz matrix, we denote by Tm(α) the m×m matrix:

Tm(α) :=

 α0 · · · α−(m−1)
...

. . .
...

αm−1 · · · α0

 . (31)

The operator norm of T(α) depends on the properties of its symbol. In the case where αk = 0 for
all k < 0, we have the following lemma.
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Lemma 7.5. Let (αk)k>0 ∈ `1(N) be a sequence of complex numbers. Then the Toeplitz matrix
T(α) is lower triangular and we have:

∀x ∈ `2(N), T(α)× x = α ∗ x.

In particular, ‖T(α)‖op 6 ‖α‖`1 .

Proof. The fact that T(α) is lower triangular and that T(α)×x = α∗x is clear from the definition
of a Toeplitz matrix. Then, Young’s inequality for convolution yields ‖α ∗ x‖`2 6 ‖α‖`1‖x‖`2 .

Concerning the inverse of a Toeplitz matrix, its norm depends on the position of zero relatively to
the range of the symbol. More precisely, we use the following result.

Lemma 7.6 (Lemma 3.8 in Böttcher and Grudsky [2000]). Let α ∈ L∞(T) and let E(α) be the
convex hull of the essential range of α. If d := dist(0, E(α)) > 0, then Tm(α) is invertible for all
m > 1, and we have ‖T−1

m (α)‖op <
2
d .

The matrix Am defined by (14) is a Toeplitz matrix and its symbol is given by:

α(t) :=
+∞∑
k=0

αk t
k, with αk :=

1− b0√
2 if k = 0,

bk−1−bk√
2 if k > 1.

Let us notice that under Assumption 4, we have (αk)k>0 ∈ `1(N) so the symbol α is continuous
on T, and thus α ∈ L∞(T).

Proof of Lemma 3.1. We apply Lemma C.12 in Comte et al. [2017] to the coefficients of g: the
sequence (βk)k>0, defined by β0 := b0√

2 and βk := bk−bk−1√
2 for k > 1, are the Fourier coefficients of

the function t ∈ T 7→ Lg( 1+t
1−t ) ∈ C. Thus, we have:

∀t ∈ T, Lg
(

1 + t

1− t

)
=

+∞∑
k=0

βk t
k,

with the convention Lg(∞) = 0. Since α(t) = 1−
∑
k>0 βkt

k, we get:

∀t ∈ T, α(t) = 1− Lg
(

1 + t

1− t

)
,

We notice that if t ∈ T \ {1}, then there exists ω ∈ R such that 1+t
1−t = iω. Thus:

∀t ∈ T \ {1}, Reα(t) = 1−Re

[
Lg
(

1 + t

1− t

)]
= 1−Re

[
Lg(iω)

]
= 1−Re

[∫ +∞

0
e−iωxg(x) dx

]
= 1−

∫ +∞

0
cos(ωx) g(x) dx

> 1−
∫ +∞

0
g(x) dx > 1− θ.

This inequality holds for t = 1 as well, hence α(T) is included in the half-plane {z ∈ C | Re(z) >
1− θ}, and so is its convex hull. By Lemma 7.6:

‖A−1
m ‖op 6

2
1− θ .

Remark 7.7. In their article, Zhang and Su [2018] show that inf |z|=1|α(z)| > 1 − θ > 0, that
is dist(0, α(T)) > 0, which is not sufficient to apply Lemma 7.6.

2this lemma is stated for the generalized Laguerre basis, which depends on a parameter a. This parameter is
equal to 1 in our case.
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7.2.1 Proof of Theorem 3.2

Proposition 7.8. Under Assumption 4, if θ < θ0 then it holds:

∀m ∈ N∗, E‖(Ã−1
m,1 −A−1

m )cm‖2`2 6
C(θ, θ0)
(1− θ0)2 ‖φm‖

2
L2 E‖Âm −Am‖2op,

where C(θ, θ0) is a constant satisfying C(θ, θ0) . (1−θ0)2

(θ0−θ)2 .

Proof. We decompose the expectation according to the event ∆1
m := {‖Â−1

m ‖op 6 2
1−θ0
}:

E‖(Ã−1
m,1 −A−1

m )cm‖2`2 = ‖A−1
m cm‖2`2P[∆c

m] + E
[
‖Ã−1

m,1(Am − Âm)A−1
m cm‖2`21∆m

]
6 ‖A−1

m cm‖2`2

(
P[∆c

m] + 4
(1− θ0)2E‖Âm −Am‖2op

)
= ‖am‖2`2

(
P[∆c

m] + 4
(1− θ0)2E‖Âm −Am‖2op

)
.

Since θ < θ0 and ‖A−1
m ‖op 6 2

1−θ (see Lemma 3.1), we get:

P[∆c
m] 6 P

[
‖Â−1

m −A−1
m ‖op >

2
1− θ0

− 2
1− θ

]
= P

[{
‖Â−1

m −A−1
m ‖op >

2
1− θ0

− 2
1− θ

}
∩
{
‖A−1

m (Âm −Am)‖op <
1
2

}]
+ P

[{
‖Â−1

m −A−1
m ‖op >

2
1− θ0

− 2
1− θ

}
∩
{
‖A−1

m (Âm −Am)‖op >
1
2

}]
.

• First term. We apply Theorem C.1 and we conclude using Markov’s inequality:

P
[{
‖Â−1

m −A−1
m ‖op >

2
1− θ0

− 2
1− θ

}
∩
{
‖A−1

m (Âm −Am)‖op <
1
2

}]
6 P

[{
‖A−1

m ‖2op‖Âm −Am‖op

1− ‖A−1
m (Âm −Am)‖op

>
2

1− θ0
− 2

1− θ

}
∩
{
‖A−1

m (Âm −Am)‖op <
1
2

}]

6 P
[
‖A−1

m ‖2op‖Âm −Am‖op >
1

1− θ0
− 1

1− θ

]
6

(1− θ)2(1− θ0)2

(θ0 − θ)2 ‖A−1
m ‖4op E‖Âm −Am‖2op 6

16(1− θ0)2

(θ0 − θ)2(1− θ)2 E‖Âm −Am‖2op.

• Second term. We use Markov’s inequality:

P
[{
‖Â−1

m −A−1
m ‖op >

2
1− θ0

− 2
1− θ

}
∩
{
‖A−1

m (Âm −Am)‖op >
1
2

}]
6 P

[
‖A−1

m (Âm −Am)‖op >
1
2

]
6 4‖A−1

m ‖2op E‖Âm −Am‖2op 6
16

(1− θ)2 E‖Âm −Am‖2op.

Thus, we obtain:

E‖(Ã−1
m,1 −A−1

m )cm‖2`2 6 ‖φm‖2L2

(
16

(1− θ)2

(
1 + (1− θ0)2

(θ0 − θ)2

)
+ 4

(1− θ0)2

)
E‖Âm −Am‖2op.

We can now prove Theorem 3.2.

Proof of Theorem 3.2. By Pythagoras Theorem, ‖φ− φ̂Lag1
m ‖2L2 = ‖φ− φm‖2L2 + ‖φm − φ̂Lag

m ‖2L2 .

E‖φm−φ̂Lag1
m ‖2L2 = E‖âLag1

m − am‖2`2 = E‖Ã−1
m,1ĉm −A−1

m cm‖2`2

6 3E‖(Ã−1
m,1 −A−1

m )cm‖2`2 + 3E‖(A−1
m − Ã−1

m,1)(cm − ĉm)‖2`2 + 3E‖A−1
m (cm − ĉm)‖2`2 .
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• First term. We apply Proposition 7.8 with Lemma 7.5:

E‖(Ã−1
m,1 −A−1

m )cm‖2`2 6 C(θ, θ0) ‖φm‖2L2 E‖Âm −Am‖2L2

6 C(θ, θ0) ‖φm‖2L2 E‖b̂m − bm‖2`1

6 C(θ, θ0) ‖φm‖2L2 mE‖b̂m − bm‖2`2

= C(θ, θ0) ‖φ‖2L2 mE‖ĝm − gm‖2L2 .

• Second term.

E‖(A−1
m − Ã−1

m,1)(cm − ĉm)‖2`2 6 E
[
‖A−1

m − Ã−1
m,1‖2op‖cm − ĉm‖2`2

]
6

(
8

(1− θ)2 + 8
(1− θ0)2

)
E‖ĥm − hm‖2L2 .

• Third term.

E‖A−1
m (cm − ĉm)‖2`2 6 ‖A−1

m ‖2op E‖cm − ĉm‖2`2

6
4

(1− θ)2E‖ĥm − hm‖
2
L2 .

E‖φm − φ̂Lag1
m ‖2L2 6 3× C(θ, θ0)

(1− θ0)2 ‖φ‖
2
L2 mE‖ĝm − gm‖2L2 + 60

(1− θ0)2E‖ĥm − hm‖
2
L2 ,

with C(θ, θ0) . (1−θ0)2

(1−θ)2 . To conclude, we use the upper bounds established in the proof of Theo-
rem 2.5. If δ = 0, we have:

E‖ĝm − gm‖2L2 6
λ

c2T
E[X], E‖ĥm − hm‖2L2 6

λ

c2T
E[W (X)],

and if δ > 0, we have:

E‖ĝm − gm‖2L2 6
C(λ)
c2T

E[X] +
E
[
X2] 1

2

(1− θ)2δ2

 ,

E‖ĥm − hm‖2L2 6
C(λ)
c2T

E[W (X)] +
E
[
W (X)2] 1

2

(1− θ)2δ2

 ,

with C(λ) = O(λ2).

7.2.2 Proof of Proposition 3.4

Let us introduce the sequence of functions (Dk)k>0 as:

Dk(x) :=


Ψ0(x)√

2 if k = 0,
Ψk(x)−Ψk−1(x)√

2 if k > 1.

so we can rewrite Am = Im − λ
cTm(E[D(X)]) and Âm = Im − 1

cT

∑NT
i=1 Tm(D(Xi)), with Tm(•)

defined by (31). Now, the difference between Âm and Am can be decomposed as:

Âm−Am = 1
cT

NT∑
i=1

{
Tm(D(Xi))−E

[
Tm(D(Xi))

]}
+ NT
cT

Tm

(
E[D(X)]

)
− λ
c

Tm(E[D(X)]). (32)

The next lemma gives a control on the first term in the decomposition (32).
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Lemma 7.9. Let Sn :=
∑n
i=1 Zi, with Zi := Tm(D(Xi)) − E

[
Tm(D(Xi))

]
. Then for p > 1 and

logm > p, we have:

E‖Sn‖2pop 6 C(p)
[
(nµm logm)p + (m logm)2p

]
,

with C(p) a constant depending on p.

Proof. We want to apply Theorem C.2. First, we need upper bounds on ‖Zi‖op and λmax(E[S>nSn]).

• Bound on ‖Zi‖op:

‖Zi‖op = sup
‖x‖`261

‖
(
Tm(D(Xi))− E[Tm(D(Xi))]

)
x‖`2

= sup
‖x‖`261

‖(D(Xi)− E[D(Xi)]) ∗ x‖`2

6 ‖D(Xi)− E[D(Xi)]‖`1

6
√

2
m−1∑
k=0
|Ψk(Xi)− E[Ψk(Xi)]|

6 2
√

2
m−1∑
k=0
‖Ψk‖∞

By Lemma 3.3, there exists an absolute constant C > 0 such that ‖Ψk‖∞ 6 C, hence
‖Zi‖op 6 C2

√
2m.

• Bound on λmax
(
E[S>nSn]

)
:

λmax
(
E[S>nSn]

)
= sup
‖x‖`2 =1

x>E[S>nSn]x

= n sup
‖x‖`2 =1

x>E[Z>1 Z1]x

= n sup
‖x‖`2 =1

E
[
‖Z1x‖2`2

]
= n sup

‖x‖`2 =1
E
[
‖(D(X1)− E[D(X1)]) ∗ x‖2`2

]
.

If x ∈ Rm, we have:

E
[
‖(D(X1)− E[D(X1)]) ∗ x‖2`2

]
=
m−1∑
j=0

E
[
({D(X1)− E[D(X1)]} ∗ x)2

j

]
=
m−1∑
j=0

Var[(D(X1) ∗ x)j ] 6
m−1∑
j=0

E
[
(D(X1) ∗ x)2

j

]
,

and by Cauchy–Schwarz inequality:

(D(X1) ∗ x)2
j 6

(
j∑

k=0
Dk(X1)2

)(
j∑

k=0
x2
k

)

6 ‖x‖2`2

j∑
k=0

Ψk(X1)2 6 ‖x‖2`2‖1X1>•‖2L2 = ‖x‖2`2X1,

because Ψk(X1) = 〈1X1>•, ψk〉 and (ψk) is an orthonormal basis of L2(R+). Hence, we obtain
λmax

(
E[S>S]

)
6 nmµ.

We want apply Theorem C.2 to our matrix Sn, which is not Hermitian. We use the following
trick, called the Paulsen dialtation. For M a rectangular matrix, we define:

M 7→ H(M) =
(

0 M
M† 0

)
,
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where M† denotes the conjugate transpose of M. Now, H(M) is an Hermitian matrix, and:

H(M)2 =
(

MM† 0
0 M†M

)
,

hence λmax
(
H(M)2) = ‖M‖2op and λmax (H(M)) = ‖M‖op. We can now apply Theorem C.2: for

M = Sn, we have:

H(Sn) =
(

0
∑
i Zi∑

i Z>i 0

)
=
∑
i

(
0 Zi

Z>i 0

)
=
∑
i

H(Zi),

thus for p > 1 and r > max(2p, 2 logm), we get that:

(
E‖Sn‖2pop

)1/2p =

Eλmax

(
H

(∑
i

Zi

))2p
1/2p

6
√

erλ1/2
max

(∑
i

EH(Zi)2

)
+ 2er

(
Emax

i
λmax (H(Zi))2p

)1/2p

6
√

erλmax (ES>nSn) + 2er
(
Emax

i
‖Zi‖2pop

)1/2p

6
√ernmµ+ C4

√
2erm.

If logm > p, then r = 2 logm and we get E‖Sn‖2pop . 22p−1(nµm logm)p + 26p−1(m logm)2p.

Now we can prove Proposition 3.4.

Proof of Proposition 3.4. From the decomposition (32), we get:

E‖Âm −Am‖2pop 6 22p−1 1
(cT )2pE‖SNT ‖

2p
op + 22p−1E|NT − λT |2p

(cT )2p ‖Tm(E[D(X)])‖2pop.

For the first term, we apply Lemma 7.9 conditional on NT :

1
(cT )2pE‖SNT ‖

2p
op 6 C(p)

[
E[Np

T ]µp(m logm)p

(cT )2p +
(
m logm
cT

)2p
]

= C(p)
[
µpE

[(
NT
cT

)p](
m logm
cT

)p
+
(
m logm
cT

)2p
]
,

with E
[(
NT
cT

)p] = O(λp). For the second term, we know from Corollary 7.3 that E[(NT −λT )2p] =
O(λpT p), and:

‖Tm(E[D(X)])‖op 6
m−1∑
k=0
|E[Dk(X)]| 6

√
2
m−1∑
k=0
|E[Ψk(X)]|

6
√

2m
(
m−1∑
k=0

E
[
Ψk(X)2])1/2

=
√

2m
(
E

[
m−1∑
k=0
〈1X>•, ψk〉2

])1/2

6
√

2mµ,

thus:
E|NT − λT |2p

(cT )2p ‖Tm(E[D(X)])‖2pop 6
O(λp)
T p

µpmp.
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7.2.3 Proof of Theorem 3.5

The following results are based on the proofs of Lemma 3.1 and Corollary 3.2 in Comte and Mabon
[2017].

Proposition 7.10. If m logm 6 cT , then it holds:

E‖Ã−1
m,2 −A−1

m ‖2pop 6 C(p, λ)
(
µp‖A−1

m ‖2pop
)
∧
(

(µp + µ2p)‖A−1
m ‖4pop

(
m logm
cT

)p)
,

with C(p, λ) = O(λp ∨ λ2p).

Proof. We decompose the expectation according to the event ∆2
m := {‖Â−1

m ‖1op 6 cT
m logm}:

E
[
‖A−1

m − Ã−1
m,2‖2pop

]
= E

[
‖A−1

m ‖2pop1∆c
m

+ ‖Â−1
m (Am − Âm)A−1

m ‖2pop1∆m

]
= ‖A−1

m ‖2pop P[∆c
m] + E

[
‖Â−1

m (Am − Âm)A−1
m ‖2pop1∆m

]
. (33)

We now give two bounds on (33), depending on the value of ‖A−1
m ‖op.

• First case: ‖A−1
m ‖op >

1
2

√
cT

m logm .
Starting from Equation (33) and using the set ∆2

m, we have that:

E
[
‖A−1

m − Ã−1
m,2‖2pop

]
6 ‖A−1

m ‖2pop + ‖A−1
m ‖2popE

[
‖Â−1

m ‖2pop‖Am − Âm‖2pop1∆m

]
6 ‖A−1

m ‖2pop + ‖A−1
m ‖2pop

(
cT

m logm

)p
E
[
‖Am − Âm‖2pop

]
.

We apply Proposition 3.4 and get:

E
[
‖A−1

m − Ã−1
m,2‖2pop

]
6 ‖A−1

m ‖2pop + ‖A−1
m ‖2pop

(
cT

m logm

)p
C(p, λ)µp

(
m logm
cT

)p
6 (1 + C(p, λ)µp)‖A−1

m ‖2pop,

with C(p, λ) = O(λp).
• Second case: ‖A−1

m ‖op <
1
2

√
cT

m logm .
Starting from (33) again, we get:

E
[
‖A−1

m − Ã−1
m,2‖2pop

]
6 ‖A−1

m ‖2pop P[∆c
m] + ‖A−1

m ‖2pop E
[
‖Am − Âm‖2pop‖Â−1

m ‖2pop1∆m

]
.

1. Upper bound on E
[
‖Am − Âm‖2pop‖Â−1

m ‖2pop1∆m

]
.

First let us notice that

‖Â−1
m ‖2pop 6 22p−1‖Â−1

m −A−1
m ‖2pop + 22p−1‖A−1

m ‖2pop.

Applying Proposition 3.4, we get:

E
[
‖Am − Âm‖2pop‖Â−1

m ‖2pop1∆m

]
6 22p−1‖A−1

m ‖2popE
[
‖Am − Âm‖2pop1∆m

]
+ 22p−1E

[
‖Am − Âm‖2pop‖Â−1

m −A−1
m ‖2pop1∆m

]
6 22p−1‖A−1

m ‖2popE
[
‖Am − Âm‖2pop1∆m

]
+ 22p−1‖A−1

m ‖2popE
[
‖Am − Âm‖4pop‖Â−1

m ‖2pop1∆m

]
6 C(p, λ)µp‖A−1

m ‖2pop

(
m logm
cT

)p
+ ‖A−1

m ‖2pop

(
cT

m logm

)p
C(2p, λ)µ2p

(
m logm
cT

)2p

6 C ′(p, λ)(µp + µ2p)‖A−1
m ‖2pop

(
m logm
cT

)p
, (34)

with C ′(p, λ) = O(λp ∨ λ2p).
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2. Upper bound on P[∆c
m] = P

[
‖Â−1

m ‖op >
√

cT
m logm

]
.

From the triangular inequality:

‖Â−1
m ‖op 6 ‖Â−1

m −A−1
m ‖op + ‖A−1

m ‖op

we obtain:

P

[
‖Â−1

m ‖op >

√
cT

m logm

]
6 P

[
‖Â−1

m −A−1
m ‖op >

√
cT

m logm − ‖A
−1
m ‖op

]
.

Moreover we have assumed that ‖A−1
m ‖op <

1
2

√
cT

m logm , so:

P

[
‖Â−1

m ‖op >

√
cT

m logm

]
6 P

[
‖Â−1

m −A−1
m ‖op > ‖A−1

m ‖op

]
.

Now let us rewrite this probability, as:

P
[
‖Â−1

m −A−1
m ‖op > ‖A−1

m ‖op

]
= P

[{
‖Â−1

m −A−1
m ‖op > ‖A−1

m ‖op

}
∩
{
‖A−1

m (Âm −Am)‖op <
1
2

}]
+ P

[{
‖Â−1

m −A−1
m ‖op > ‖A−1

m ‖op

}
∩
{
‖A−1

m (Âm −Am)‖op >
1
2

}]
6 P

[{
‖Â−1

m −A−1
m ‖op > ‖A−1

m ‖op

}
∩
{
‖A−1

m (Âm −Am)‖op <
1
2

}]
+ P

[
‖A−1

m (Âm −Am)‖op >
1
2

]
. (35)

To control the second term, we apply Markov inequality and Proposition 3.4:

P
[
‖A−1

m (Âm −Am)‖op >
1
2

]
6 P

[
‖A−1

m ‖op‖Âm −Am‖op >
1
2

]
6 C(p, λ)µp

(
m logm
cT

)p
‖A−1

m ‖2pop. (36)

Next to control the first term on the right hand side of Equation (35), we apply Theorem C.1:

P
[{
‖Â−1

m −A−1
m ‖op > ‖A−1

m ‖op

}
∩
{
‖A−1

m (Âm −Am)‖op <
1
2

}]
6 P

[{
‖Âm −Am‖op‖A−1

m ‖2op

1− ‖A−1
m (Âm −Am)‖op

> ‖A−1
m ‖op

}
∩
{
‖A−1

m (Âm −Am)‖op <
1
2

}]

6 P
[
‖Âm −Am‖op >

1
2‖A

−1
m ‖−1

op

]
. (37)

We apply Markov inequality again, along with Proposition 3.4:

P
[{
‖Â−1

m −A−1
m ‖op > ‖A−1

m ‖op

}
∩
{
‖A−1

m (Âm −Am)‖op <
1
2

}]
6 C(p, λ)µp

(
m logm
cT

)p
‖A−1

m ‖2pop.

So starting from Equation (35) and gathering Equations (36) and (37) gives:

P

[
‖Â−1

m ‖op >

√
cT

m logm

]
6 C(p, λ)µp

(
m logm
cT

)p
‖A−1

m ‖2pop, (38)

with C(p, λ) = O(λp).
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Finally gathering Equations (34) with (38), we get that

E
[
‖A−1

m − Ã−1
m,2‖2pop

]
6 C(p, λ)(µp + µ2p)

(
‖A−1

m ‖4op
m logm
cT

)p
.

with C(p, λ) = O(λp ∨ λ2p).

The next proposition is a variant of the last one. It gives a better bound than applying directly
Proposition 7.10 to E

[
‖Ã−1

m,2 −A−1
m ‖2op‖cm‖2`2

]
.

Proposition 7.11. If m logm 6 cT , then it holds:

E‖(Ã−1
m,2 −A−1

m )cm‖2`2 6 C(λ)‖φm‖2L2

(
µ ∧

{
(µ+ µ2)‖A−1

m ‖2op
m logm
cT

})
,

with C(λ) = O(λ ∨ λ2).

Proof. The proof follows the lines of the proof of of Proposition 7.10, but starting from the following
decomposition:

E‖(A−1
m − Ã−1

m,2)cm‖2`2 = ‖A−1
m cm‖2`2P[∆c

m] + E
[
‖Â−1

m (Am − Âm)A−1
m cm‖2`21∆m

]
= ‖am‖2`2P[∆c

m] + E
[
‖Â−1

m (Am − Âm)A−1
m cm‖2`21∆m

]
,

It yields the following upper bound

E
[
‖(A−1

m − Ã−1
m,2)cm‖2`2

]
6 ‖am‖2`2P[∆c

m] + ‖am‖2`2E
[
‖Â−1

m ‖2op‖Am − Âm‖2op1∆m

]
.

Following the proof of Proposition 7.10, we get:

E
[
‖(A−1

m − Ã−1
m,2)cm‖2`2

]
6 C(λ)‖am‖2L2

(
µ ∧

{
(µ+ µ2)‖A−1

m ‖2op
m logm
cT

})
,

with C(λ) = O(λ ∨ λ2).

Now we can prove Theorem 3.5.

Proof of Theorem 3.5. By Pythagoras Theorem, ‖φ − φ̂Lag2
m ‖2L2 = ‖φ − φm‖2L2 + ‖φm − φ̂Lag2

m ‖2L2 .
In the proof of Theorem 2.5, we saw that:

E‖ĉm − cm‖2`2 = E‖ĥm − hm‖2L2 6
λ

c2T
E[W (X)].

We decompose the variance term in three terms:

E‖φm−φ̂Lag2
m ‖2L2 = E‖âLag2

m − am‖2`2 = E‖Ã−1
m,2ĉm −A−1

m cm‖2`2

6 3E‖(Ã−1
m,2 −A−1

m )cm‖2`2 + 3E‖(A−1
m − Ã−1

m,2)(cm − ĉm)‖2`2 + 3E‖A−1
m (cm − ĉm)‖2`2 .

For the first term, we apply Proposition 7.10. For the second term, we use the fact that Ã−1
m,2 and

ĉm are independent, and we apply Proposition 7.11:

E‖(A−1
m − Ã−1

m,2)(cm − ĉm)‖2`2 6 E‖A−1
m − Ã−1

m,2‖2op × E‖cm − ĉm‖2`2 = O
(

1
T 2

)
.

For the third term:

E‖A−1
m (cm − ĉm)‖2`2 6 ‖A−1

m ‖2op E‖ĉm − cm‖2`2 6 ‖A−1
m ‖2op

λ

c2T
E[W (X)].

We apply Lemma 3.1 and we obtain the following bound, with C(λ) = O(λ ∨ λ2):

E‖φm − φ̂Lag2
m ‖2L2 6 3 ‖A−1

m ‖2op
C(λ)
cT

(
‖φm‖2L2(µ+ µ2)m log(m) + E[W (X)]

c

)
+O

(
1
T 2

)
6 12 C(λ)

cT (1− θ)2

(
‖φm‖2L2(µ+ µ2)m log(m) + E[W (X)]

c

)
+O

(
1
T 2

)
.
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7.3 Proofs of Section 4
Proof of Lemma 4.6. It follows from direct calculation using (6):

〈F,ψk〉 =
∫ +∞

0
C exp(−γx)ψk(x) dx

= C
√

2
k∑
j=0

(
k

j

)
(−2)j

j!

∫ +∞

0
xje−(1+γ)x dx

= C
√

2
k∑
j=0

(
k

j

)
(−2)j

(1 + γ)j+1

= C
√

2
γ + 1

(
1− 2

γ + 1

)k
= C

√
2

γ + 1

(
γ − 1
γ + 1

)k
.

Since γ is positive, we have
∣∣∣γ−1
γ+1

∣∣∣ < 1 and we can compute the geometric series:

+∞∑
k=m
〈F,ψk〉2 = 2C

(γ + 1)2

(
γ−1
γ+1

)2m

1−
(
γ−1
γ+1

)2 = C2

2γ

(
γ − 1
γ + 1

)2m
.

Proof of Proposition 4.7. For the ruin probability and the Laplace transform of the ruin time, we
start from (17) and we apply Lemma 4.6. For the expected jump size causing the ruin, we also
start from (17) and we write φ = F1 + F2 with:

F1(u) := µ(1 + 2θ)e−
1−θ
µ u1u>0, F2(u) := µe−u/µ1u>0.

Hence, ‖φ− φm‖2L2 6 2
∑+∞
k=m〈F1, ψk〉2 + 2

∑+∞
k=m〈F2, ψk〉2. We apply Lemma 4.6:

‖φ− φm1‖2L2 6
µ2(1 + 2θ)2

1−θ
µ

( 1−θ
µ − 1

1−θ
µ + 1

)2m

+ µ3

( 1
µ − 1
1
µ + 1

)2m

= µ3(1 + 2θ)2

1− θ

(
1− θ − µ
1− θ + µ

)2m
+ µ3

(
1− µ
1 + µ

)2m

6
µ3(1 + 2θ)2

1− θ

(∣∣∣∣1− θ − µ1− θ + µ

∣∣∣∣ ∨ ∣∣∣∣1− µ1 + µ

∣∣∣∣)2m
.
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A Model reduction procedure
We propose a model reduction procedure to choose the dimensions m2 and m3, defined by (12). We
explain the method for the choice of m2 in the case δ = 0.

Let us assume we have estimated the M first coefficients of g, for a large M . By Remark 2.6,
we know that the best estimator is ĝM . Our goal is to choose m̂2 smaller than M that achieves a
similar MISE. This provides a parsimonious version of the estimator without degrading its MISE.
By Theorem 2.5, the MISE of ĝm is given by:

E‖g − ĝm‖2L2 6 ‖g − gm‖2L2 + λ

c2T
E[X].

Ideally, we would like to choose the first m such that the bias term ‖g − gm‖2L2 is smaller than
the variance term λ

c2T E[X]. Since these terms are unknown, we estimate them by
∑M−1
k=m b̂2k and

1
(cT )2

∑NT
i=1Xi respectively. We choose m̂2 as:

m̂2 = min
{

1 6 m 6M − 1

∣∣∣∣∣
M−1∑
k=m

b̂2k 6
κ2

(cT )2

NT∑
i=1

Xi

}
, (39)

with κ2 an adjustment constant. The next proposition shows that the MISE of ĝm̂2 does not exceed
the MISE of ĝM by more than κ2 × (variance term).

Proposition A.1. Let κ2 > 0, if m̂2 is chosen as (39) then the MISE of ĝm̂2 is:

E‖g − ĝm̂2‖2L2 6 ‖g − gM‖2L2 + (1 + κ2) λ

c2T
E[X].

Proof. By Pythagoras Theorem:

‖g − ĝm̂2‖2L2 = ‖g − ĝM‖2L2 + ‖ĝM − ĝm̂2‖2L2

= ‖g − ĝM‖2L2 +
M−1∑
k=m̂2

b̂2k

6 ‖g − ĝM‖2L2 + κ2

(cT )2

NT∑
i=1

Xi.

We take the expectation, and we apply Theorem 2.5:

E‖g − ĝm̂2‖2L2 6 ‖g − gM‖2L2 + (1 + κ2) λ

c2T
E[X].
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With Model Reduction Without Model Reduction

Ruin Probability
1.06 1.06

[0.86, 1.26] [0.86, 1.25]
m̂2 = 4.2, m̂3 = 4.1 m2 = m3 = NT

Jump size causing the ruin
40.1 41.6

[33.7, 46.9] [34.7, 48.4]
m̂2 = 4.1, m̂3 = 4.3 m2 = m3 = NT

Laplace transform, δ = 0.1
0.092 0.098

[0.075, 0.110] [0.079, 0.117]
m̂2 = 3.9, m̂3 = 4.0 m2 = m3 = NT

Table 4: Comparison between the MISE of the Laguerre–Fourier estimator with and without
model reduction. In each case, we chose the following parameters: X ∼ Exp(1/2), λ = 1.25, c = 3,
T = 80. With this set of parameters, E[NT ] = 100. Each cell displays an estimation of the MISE
over 200 samples with a 95% confidence interval, and the mean selected models m̂2 and m̂3. In
every case, m1 is equal to NT .

The same goes for m̂3: we estimate the bias term by
∑M−1
k=m ĉ2k and the variance term by

1
(cT )2

∑NT
i=1W (Xi); we choose m̂3 as:

m̂3 = min
{

1 6 m 6M − 1

∣∣∣∣∣
M−1∑
k=m

ĉ2k 6
κ3

(cT )2

NT∑
i=1

W (Xi)
}
.

By the same arguments, the MISE of ĥm3 is given by:

E‖h− ĥm̂3‖2L2 6 ‖h− hM‖2L2 + (1 + κ3) λ

c2T
E[W (X)].

In the case δ > 0, we choose the same m̂2 and m̂3 as in the case δ = 0. By the same arguments,
we obtain:

E‖g − ĝm̂2‖2L2 6 ‖g − gM‖2L2 + C(λ)
c2T

E[X] +
E
[
X2] 1

2

(1− θ)2δ2

+ κ2
λ

c2T
E[X]

6 ‖g − gM‖2L2 + (1 + κ2)C(λ)
c2T

E[X] +
E
[
X2] 1

2

(1− θ)2δ2

 .

E‖h− ĥm̂3‖2L2 6 ‖h− hM‖2L2 + C(λ)
c2T

E[W (X)] +
E
[
W (X)2] 1

2

(1− θ)2δ2

+ κ3
λ

c2T
E[W (X)]

6 ‖h− hM‖2L2 + (1 + κ3)C(λ)
c2T

E[W (X)] +
E
[
W (X)2] 1

2

(1− θ)2δ2

 .

Numerically, we compared the MISE’s of the Laguerre–Fourier estimator with and without the
model reduction procedure for m̂2 and m̂3, with the choice κ2 = κ3 = 0.3. We show the results
in Table 4. We see that the model reduction procedure does not affect the MISE of the estimator
and we emphasize that the selected dimensions are far lower than the maximum dimension (m̂’s
are less than 10 whereas the maximum dimension is 100).

B Uniform bound on the primitives of the Laguerre func-
tions

In this section, we prove that the primitives of the Laguerre function are uniformly bounded. The
sketch of the proof comes from fedja [2021].
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Proof of Lemma 3.3. Let uk(x) := Lk(x)e−x/2. We first notice that the complete integral of uk is
uniformly bounded: ∫ +∞

0
uk(x) dx = 2

∫ +∞

0
Lk(2x)e−x dx

= 2
k∑
j=0

(
k

j

)
(−2)j

j!

∫ +∞

0
xje−x dx

= 2
k∑
j=0

(
k

j

)
(−2)j = 2(−1)k.

We will show that |
∫ x

0 uk| 6 C|
∫∞

0 uk| = 2C for an absolute constant C > 0. The k-th Laguerre
polynomial satisfies the ODE:

xL′′k + (1− x)L′k + kLk = 0,

thus, the function uk satisfies:

xu′′k + u′k +
(
k + 1

2 −
1
4x
)
uk = 0 (40)

To kill the first derivative, we consider vk(x) := uk(x3/2)x1/2. The functions uk and vk have the
same partial integrals (up to the constant 2/3):

∀x > 0,
∫ x

0
vk(t) dt = 2

3

∫ x2/3

0
uk(t) dt.

The first two derivatives of vk are:

v′k(x) = 3
2xu

′
k(x3/2) + 1

2x
−1/2u(x3/2)

v′′k (x) = 9
4x

3/2u′′(x3/2) + 9
4u
′(x3/2)− 1

4x
−3/2u(x3/2)

so using the ODE (40) for u yields the following ODE for v:

v′′k + Φkvk = 0

where Φk is given by:

Φk(x) := 9
4

(
k + 1

2
x1/2 −

1
4x
)

+ 1
4x2 .

The important properties of this function are that it is convex and decreasing.
Since the Laguerre polynomials have simple zeros, the function vk has (k + 1) simple zeros

(the zeros of the k-th Laguerre polynomial, and 0) so the integral of vk can be decomposed as an
alternating sum

∫∞
0 vk =: Ik = A0 − A1 + A2 − · · · + (−1)kAk, where the Ai’s are the unsigned

areas of the excursions of vk (see Figure 1). Based on the following lemma (proven later), we claim
that A0 < A1 < · · · < Ak.

Lemma B.1. Let F1, F2 be two C1 functions defined on an open interval I containing 0, and let
y1, y2 be the solutions of the following ODE:

y′′1 + F1(x)y1 = 0
y′′2 + F2(x)y2 = 0
y1(0) = y2(0) = 0
y′2(0) > y′1(0) > 0.

Let M > 0 such that y1 and y2 are positive on J := (0,M) ⊆ I. If F1 > F2 on J , then we have
y1 6 y2 on J .
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Figure 1: Graph of v4. We see that the area of the excursions is increasing.

Indeed, let z > 0 be a zero of vk and assume w.l.o.g. that vk is positive after z and negative before.
Let y1(x) := −vk(z − x) and y2(x) := vk(z + x) (i.e. y1 is the central inversion of vk with respect
to z). Thus, y1 and y2 satisfy the ODE:{

y′′1 + Φk(z − x)y1 = 0
y′′2 + Φk(z + x)y2 = 0

with the initial conditions y1(0) = y2(0) = vk(z) = 0 and y′1(0) = y′2(0) = v′k(z) > 0. Since Φk is
decreasing, we have Φk(z − x) > Φk(z + x), so Lemma B.1 yields that y1(x) 6 y2(x) for x > 0 as
long as y1(x) and y2(x) are positive. Hence, the area of the excursion preceding z is smaller than
the area of the excursion following z.

Now let z be the last zero of vk, and let us assume w.l.o.g. that vk is positive after z (otherwise
we consider −vk, it satisfies the same ODE than vk). In this case, Ik = A0−A1 + . . .−Ak−1 +Ak
with A0 < . . . < Ak−1 < Ak. Thus the maximum value of |

∫ x
0 vk| is attained either by taking the

complete integral (it is the maximum of
∫ x

0 vk), either by leaving out the last excursion (it is the
minimum of

∫ x
0 vk). We show that the second option is dominated by the first one: there exists an

absolute constant C > 0 such that Ak − Ik 6 CIk. To do that it suffices to show that Ak−1 6 cAk
for absolute constant c ∈ (0, 1), hence Ak − Ik 6 c

1−cIk.
The strategy is to compare the function vk to the Airy function of the first kind. This function

is solution of the ODE: {
y′′ − xy = 0

lim
x→+∞

y(x) = 0. (41)

Let z∗` and z∗p be respectively the last and the penultimate zeros of Ai. We recall that z∗` is negative
(all the zeros of Ai are negative), and that Ai is negative on (z∗p , z∗` ) and positive on (z∗` ,+∞).

Lemma B.2. Let Ai be the Airy function of the first kind, and let z be the last zero of vk. There
exists a decreasing linear function Υk satisfying Υk(z) = Φk(z), and there exists a > 0 and b ∈ R,
such that the function Ai(ax+ b) satisfies:{

y′′ + Υk(x) y = 0
y(z) = 0

and such that it stays positive on (z,+∞) and tends to 0 at +∞.

Let wk(x) := εAi(ax + b) where a and b are given by Lemma B.2, and ε > 0 is small enough
such that 0 < w′k(z) < v′k(z). Let z` and zp be respectively the last and the penultimate zeros of
wk. By definition of wk, its last zero is the same than vk’s, that is z` = z. Moreover, the zeros of wk
and Ai are linked by the linear transformation x 7→ ax+ b: we have z∗` = az` + b and z∗p = azp + b.

Let us consider:
W := det

(
vk wk
v′k w′k

)
= vkw

′
k − v′kwk,

the Wronskian of vk and wk. Since W vanishes at z and +∞, we have:

0 =
∫ +∞

z

W ′(x) dx =
∫ +∞

z

(
Φk(x)−Υk(x)

)
vk(x)wk(x)︸ ︷︷ ︸

>0

dx,
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so the sign of Φk −Υk must change on (z,+∞). Since Φk −Υk is convex and (Φk −Υk)(z) = 0,
this is possible only if it is negative and then positive. Hence, W is first decreasing and then
increasing on (z,+∞). Since it starts from zero at z and tends to zero at +∞, we conclude that
W is negative on (z,+∞).

It follows that wk < vk on (z,+∞). Indeed, by contradiction if x0 := inf{x ∈ (z,+∞) |wk(x) >
vk(x)} existed and was finite, we would have vk(x0) = wk(x0) > 0 and v′k(x0) 6 w′k(x0). Thus, we
would have W(x0) = vk(x0)w′k(x0)− v′k(x0)wk(x0) > 0; contradiction. We conclude that the area
of the last excursion of wk is less than vk’s:

∫∞
z`
wk 6 Ak.

We have seen that Φk − Υk was negative then positive on (z,+∞). By convexity, it has to
be positive on (0, z), i.e. Φk > Υk on the left of z. We apply Lemma B.1 to −vk(z − x) and
−wk(z − x), and we conclude that the area of the penultimate excursion of vk is less than wk’s:
Ak−1 6 |

∫ z`
zp
wk|.

We conclude that Ak−1/Ak is bounded above by the ratio of the areas of the penultimate
excursion to the last excursion of wk. By a linear change of variable, this ratio is equal to the ratio
of the areas of the penultimate excursion to the last excursion of the Airy function:

Ak−1

Ak
6

∣∣∣∫ z`zp wk(x) dx
∣∣∣∫ +∞

z`
wk(x) dx

=

∣∣∣∫ z∗`z∗p Ai(x) dx
∣∣∣∫ +∞

z∗
`

Ai(x) dx
=: c.

This is an absolute constant, we just need to prove it is smaller than 1 to end the proof. The
function Ai satisfies an ODE of the form y′′ + F (x)y = 0 with F (x) = −x a decreasing function,
thus by considering the functions y1(x) = −Ai(z∗` − x) and y2 := Ai(z∗` + x), we can apply again
Lemma B.1 (as we did with vk), to conclude that y1(x) 6 y2(x) for x > 0 as long as y1(x) is
positive (y2 being positive for every x > 0). This proves that |

∫ z∗`
z∗p

Ai| <
∫∞
z∗
`

Ai, that is c < 1.

Proof of Lemma B.1. First, let us consider the case y′2(0) > y′1(0). Let W := y1y
′
2 − y′1y2 be the

Wronskian of y1 and y2. Then W ′ = (F1−F2)y1y2 is positive on J and W(0) = 0, so W > 0 on J .
By contradiction, suppose there exists x ∈ J such that y1(x) > y2(x) > 0 and consider

x0 := inf{x ∈ J | y1(x) > y2(x) > 0}. Since y′2(0) > y′1(0), we know that y1 is below y2 on a
right neighborhood of 0, so x0 > 0. By continuity, we have y1(x0) = y2(x0) > 0, so we must have
y′1(x0) > y′2(x0); otherwise, we would have y1(x) > y2(x) > 0 on a left neighborhood of x0, which
is impossible if x0 > 0. Thus W(x0) = y1(x0)[y′2(x0)− y′1(x0)] 6 0 with x0 ∈ J ; contradiction.

Now consider the case y′2(0) = y′1(0). For ε > 0 small enough, we consider yε the solution of: y′′ε + F1(x)yε = 0
yε(0) = 0
y′ε(0) = y′2(0)− ε > 0.

Applying the first case, we have yε 6 y2 while yε and y2 are positive. Taking ε → 0, we obtain
y1 6 y2.

Proof of Lemma B.2. The Airy function is solution of (41), so Ai(ax+ b) (with a > 0) satisfies:{
y′′ − a2(ax+ b)y = 0

lim
x→+∞

y(x) = 0.

We need to determine (a, b) such that the two following conditions hold:

1. Let Υk(x) := −a2(ax+ b), we need to choose a, b such that Υk(z) = Φk(z).

2. Let z∗` be the last zero of Ai. We know that z∗` < 0 and that Ai is positive on (z∗` ,+∞), thus
we need to choose a, b such that az + b = z∗` so Ai(ax + b) stays positive on (z,+∞) and
vanishes at z.

Thus, (a, b) ∈ R∗+ × R must be solution of:{
−a2(az + b) = Φk(z)
az + b = z∗`

⇐⇒

{
a2 = −Φk(z)

z∗
`

az + b = z∗`
(42)
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Since z∗` < 0, this system has a solution iff Φk(z) > 0. By contradiction, if we had Φk(z) 6 0,
then Φk would be negative on (z,+∞). Since the function vk is positive after z and satisfies
v′′k (x) = −Φk(x)vk(x), then vk would be strictly convex on (z,+∞). But the function vk starts
from zero at z with a positive derivative, stays positive, and tends to 0 at +∞, so it cannot be
strictly convex on (z,+∞); contradiction. Thus, the system (42) has a solution.

C Miscellaneous results
Theorem C.1. Let A, B be (m×m) matrices. If A is invertible and ‖A−1B‖op < 1, then A+B
is invertible and it holds: ∥∥(A + B)−1 −A−1∥∥

op 6
‖A−1‖2op‖B‖op

1− ‖A−1B‖op
.

Proof. Since ‖A−1B‖op < 1, its Neumann series is normally convergent and we have:

+∞∑
k=0

(−1)k(A−1B)k = (Im + A−1B)−1.

Hence: ∥∥(A + B)−1 −A−1∥∥
op 6

∥∥A−1∥∥
op

∥∥(Im + A−1B)−1 − Im
∥∥

op

6
∥∥A−1∥∥

op

+∞∑
k=1

∥∥A−1B
∥∥k

op

=
∥∥A−1∥∥

op
‖A−1B‖op

1− ‖A−1B‖op
6
‖A−1‖2op‖B‖op

1− ‖A−1B‖op
.

Theorem C.2 (Theorem A.1 in Chen et al. [2012]). Suppose that q > 2 and fix r > max(q, 2 log p).
Consider a finite sequence {Yi} of independent, symmetric, random, self-adjoint matrices with
dimension p× p. Then:[

Eλmax

(∑
i

Yi

)q]1/q

6

√√√√erλmax

(∑
i

EY2
i

)
+ 2er

[
Emax

i
λqmax (Yi)

]1/q
.
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