Improving energy efficiency of magnetic CO 2 methanation by modifying coil design, heating agents, and by using eddy currents as the complementary heating source - Archive ouverte HAL
Article Dans Une Revue Journal of Applied Physics Année : 2021

Improving energy efficiency of magnetic CO 2 methanation by modifying coil design, heating agents, and by using eddy currents as the complementary heating source

Résumé

The Sabatier reaction activated by high-frequency magnetic fields is a promising approach for the power-togas process because of expected high energy efficiencies and fast switch-on times. Recent progresses have been achieved by combining nanoparticles displaying both a high heating power and a good catalytic activity. Here, we alternatively use iron microparticles associated with our owndesigned Ni/CeO 2 catalyst. The heating agent is cheap and abundant, and we demonstrate that the presence of eddy currents in the system improves its heating performance. The contribution of eddy currents to global heating is successfully determined by an original protocol consisting in comparing a calorimetric and a high-frequency hysteresis loop-based method to measure heating power. In addition, the optimization of the catalyst bed using SiC-spacers limits sintering and thus improves the durability of the catalyst. The energy efficiency of the catalysis process, calculated as a function of coil consumption and gas flow, is clearly improved by the use of an air-cooled Litz wire coil. These improvements are a step forward toward the development of a cheap and efficient process for chemical energy storage.
Fichier principal
Vignette du fichier
JAP methanation poudre de fer.pdf (3.38 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-03211244 , version 1 (28-04-2021)

Identifiants

Citer

Stéphane Faure, Sumeet S Kale, Nicolas Mille, Simon Cayez, Thibault Ourlin, et al.. Improving energy efficiency of magnetic CO 2 methanation by modifying coil design, heating agents, and by using eddy currents as the complementary heating source. Journal of Applied Physics, 2021, 129 (4), pp.044901. ⟨10.1063/5.0035655⟩. ⟨hal-03211244⟩
91 Consultations
163 Téléchargements

Altmetric

Partager

More