NMPC Through qLPV Embedding: A Tutorial Review of Different Approaches - Archive ouverte HAL
Communication Dans Un Congrès Année : 2021

NMPC Through qLPV Embedding: A Tutorial Review of Different Approaches

Résumé

Nonlinear Model Predictive Control (NMPC) formulations through quasi-Linear Parameter Varying (qLPV) embeddings have been brought to focus in recent literature. The qLPV realisation of the nonlinear dynamics yields linear predictions at each sampling instant. Thereby, these control strategies offer online implementation with numerical toughness of Sequential Quadratic Programs (SQPs), which can be solved much faster than the Nonlinear Programs (NPs) generated with "regular" NMPC design. The general lines of such methods are as follows: (i) The qLPV embedding is formulated with state-dependent scheduling parameters; (ii) recursive extrapolation procedures are used to estimate the values of these parameters along the prediction horizon; (iii) these estimates are used to compute linear predictions, which are used to compute the control law through a constrained optimisation procedure. This paper details the overall concept of these novel NMPC techniques and reviews two different (efficient) implementation options. Realistic academic examples are also provided, considering a suspension system and a cascaded tank process.
Fichier principal
Vignette du fichier
NMPC21_Tutorial.pdf (380.33 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03210253 , version 1 (27-04-2021)
hal-03210253 , version 2 (30-04-2021)

Identifiants

Citer

Marcelo Menezes Morato, Gia Quoc Bao Tran, Guilherme N G dos Reis, Julio E Normey-Rico, Olivier Sename. NMPC Through qLPV Embedding: A Tutorial Review of Different Approaches. NMPC 2021 - 7th IFAC Conference on Nonlinear Model Predictive Control, Jul 2021, Bratislava, Slovakia. ⟨10.1016/j.ifacol.2021.08.561⟩. ⟨hal-03210253v2⟩
191 Consultations
232 Téléchargements

Altmetric

Partager

More