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Abstract: Nonlinear Model Predictive Control (NMPC) formulations through quasi-Linear
Parameter Varying (qLPV) embeddings have been brought to focus in recent literature. The
qLPV realisation of the nonlinear dynamics yields linear predictions at each sampling instant.
Thereby, these strategies generate online programs with reduced numerical burden, much faster
to solve than the Nonlinear Programs generated with “regular” NMPC. The general lines of these
methods: (i) The qLPV embedding is formulated with state-dependent scheduling parameters;
(ii) Recursive extrapolation procedures are used to estimate the values of these parameters along
the prediction horizon; (iii) These estimates are used to compute linear predictions, which are
incorporated by the constrained optimisation procedure. This paper details the overall concept
of these novel NMPC techniques and reviews two different (efficient) implementation options.
Realistic academic examples are provided to illustrate their performances.

Keywords: Nonlinear Model Predictive Control, Linear Parameter Varying Systems, Tutorial.

1. INTRODUCTION

Model Predictive Control (MPC) is very well recognised
for the purposes of regulation and reference tracking in
constrained processes. Anyhow, nonlinear MPC (NMPC)
is not trivial and comes with an increased numerical
burden, complicating real-time implementation. This was
a very substantial issue until the late 10’s, since even
the most efficient NMPC algorithms displayed exponential
complexity grow w.r.t. system size.

Over the last decade, there has been remarkable progress
on expanding the real-time capabilities of NMPC (Gros
et al., 2020), with tools that enable sufficiently fast so-
lutions of the Nonlinear Programs (NPs): real-time itera-
tions (Quirynen et al., 2015), gradient use (Englert et al.,
2019), and input parameterisation (Rathai, 2020).

In parallel to this progress, the Linear Parameter Varying
(LPV) toolkit has been widely popularised (Sename et al.,
2013). For many nonlinear systems, quasi-LPV (qLPV)
embeddings offer exact realisations with elegance and
simplicity since there are no nonlinear state transitions
but rather linear maps scheduled by (known, bounded)
parameters ρ. Accordingly, recent advances have provided
NMPC schemes via qLPV embedding, see (Morato et al.,
2020a) and references therein. These algorithms enable
real-time operation because the “full-blown” nonlinear
predictions are replaced by a sequence of linear ones,
solved through Sequential Quadratic Programs (SQPs).

? This work has been supported by CNPq (304032/2019 − 0),
CAPES (001) and ITEA3 European project (15016) EMPHYSIS.

The notion of deploying qLPV-embedding NMPC is very
recent. Therefore, in this brief tutorial paper, we discuss
this concept, detailing the implementation steps and illus-
trating their application to different processes. We stress
that this paper significantly differs from (Morato et al.,
2020a), which surveys all kinds of LPV MPC algorithms
(robust, sub-optimal, etc.). The focus herein is only set
upon the most recent algorithms, which use embeddings
to fasten the resulting NPs.

The rest of this paper is organised as follows. In Sec. 2, we
provide the qLPV NMPC problem setup, as well as the
underlying assumptions required for correct implementa-
tion. In Sec. 3, we detail two different mechanisms for the
estimation of the future scheduling parameters. Section
4 provides terminal ingredients that ensure stability and
recursive feasibility. In Sec. 5, we provide two different ap-
plications: the regulation goal of a semi-active suspension
system and the level tracking problem in a quadruple-tank
process. Finally, concluding remarks are drawn in Sec. 6.

2. PROBLEM SETUP

Consider the following discrete-time nonlinear system:{
x(k + 1) = f (x(k), u(k)) ,
y(k) = fy (x(k), u(k)) ,

(1)

being k ∈ N the sampling instant, x ∈ Rnx the vector of
states, u ∈ Rnu the vector of control inputs, and y ∈ Rny
the vector of measured outputs. Consider a controlled
equilibrium point, i.e., 0 is s.t. there exists a ū ∈ U s.t.
f(0, ū) = 0. The suitable operation is defined by: x ∈ X



and u ∈ U , with X := {xj ∈ R : ‖xj‖2 ≤ xj ,∀j ∈ N[1,nx]},
and U := {ui ∈ R : ‖ui‖2 ≤ ui,∀i ∈ N[1,nu]}. The
states x are measured, thus we use the state-feedback
u(k) := κ(k)x(k) to ensure that the dynamics adheres to
desired specifications. We consider two possible objectives:
(a) Regulation (steering x to the origin), and (b) Tracking
(steering y to a steady-state target yr, which conversely
means steering (x, u) to (xr, ur)).

2.1 qLPV Embedding

Nonlinear systems can be described with an exact qLPV
realisation if the Linear Differential Inclusion (LDI) prop-
erty is verified: Suppose that ∃H(x, u) ∈ R(nx+ny)×(nx+nu)

s.t. [(f(x, u)) (fy(x, u))] := H(x, u)[xu]. Then, Eq. (1) is
equivalent to:{

x(k + 1) = A(ρ(k))x(k) +B(ρ(k))u(k) ,
y(k) = C(ρ(k))x(k) +D(ρ(k))u(k) ,
ρ(k) = fρ(x(k), u(k)) ∈ P .

(2)

This qLPV model is scheduled by an endogenous nonlinear
map 1 fρ(·), which imposes bounded and known schedul-
ing variables ρ for all sampling instants. The scheduling set

is given by: P :=
{
ρj ∈ R | ρ

j
≤ ρj ≤ ρj ,∀j ∈ Z[1,nρ]

}
.

Assumption 1. The scheduling variables exhibit bounded
rates of variation. This is: ∂ρ(k) = (ρ(k)− ρ(k − 1)) ∈
∂P :=

{
∂ρj ∈ R : ∂ρ

j
≤ ∂ρj ≤ ∂ρj ,∀j ∈ N[1,np]

}
.

2.2 The MPC Formulation

The MPC is applied at each sampling instant as follows:
The states are measured, the scheduling parameters are
computed, and the optimisation problem is solved:

min
Uk

V (x(k +Np)) +

Np∑
j=1

` (x(k + j), u(k + j − 1)) , (3)

s.t. x(k + j + 1) = A(ρ(k + j))x(k + j)

x(k + j + 1) + B(ρ(k + j))u(k + j), j ∈ N[0,Np−1] ,

y(k + j) = C(ρ(k + j))x(k + j)

y(k + j) + D(ρ(k + j))u(k + j), j ∈ N[0,Np−1] ,

(xT (k + j) , uT (k + j))T ∈ (X × U) , j ∈ N[0,Np−1] ,

x(k +Np) ∈ Xf .

V (·) is an offset and Xf is a compact set (denoted terminal
ingredients, see Sec. 4). The first entry of solution U?k =
col{u?(k + j)},∀j ∈ N[0,Np−1] is applied to the process.

The quadratic stage cost `(x, u) = ‖x − xr‖2Q + ‖u −
ur‖2R can be defined in terms of regulation or tracking
purposes. For regulation, it is implied that xr and ur are
nil. For tracking, a set-point target zr := (xTr , u

T
r )T should

imply the desired output target yr. Assume there exists
a linear (parameter varying) combination of the states x
and inputs u that ensures y(k) → yr. As gives (Limon

1 Through the sequel, we drop the dependency of fρ on u, for
notation simplicity, but with no loss of generality.

et al., 2018), the following reference selector can be used
to determine zr:

min
zr
‖ (C(fρ(zr)) D(fρ(zr)) ) zr − yr‖2 , (4)

s.t.

[
(I−A(fρ(zr))) −B(fρ(zr))
C(fρ(zr)) D(fρ(zr))

]
zr =

[
0nx
yr

]
,

(zTr , fρ(zr)
T )T ∈ ((X × U)× P) ,

which ensures an admissible steady-state target zr that
imposes the output tracking objective. If the output refer-
ence goal yr is time-varying, this target selection problem
can be solved online, increasing computational complexity.

3. QLPV NMPC

The MPC formulation in Eq. (3) requires the knowledge
of the future values of the scheduling parameters ρ(k+ j),
along the prediction horizon. A direct solution is to plug
the nonlinear proxy ρ(k+j) = fρ(x(k+j)) as a constraint
of the optimisation procedure. Nonetheless, this converts
the optimisation into an NP, which has the computational
complexity of regular “full-blown” NMPCs.

Recent literature has shown the development of algorithms
that overlap this issue by replacing the true values of ρ(k+
j) by estimates ρ̂(k+j). By doing so, the NPs are converted
into more efficient programs, with the complexity of SQPs.

With regard to regular NMPC formulations, these novel
qLPV embedding frameworks are attractive because the
nonlinear state predictions and constraints are handled
linearly at each sample. Thus, the numerical effectiveness
becomes comparable to the fast real-time NMPCs, as
demonstrated in (Cisneros and Werner, 2019).

Accordingly, we detail the basic concepts of two of these
methods: Sequential guessing technique from (Cisneros
and Werner, 2020) and the Recursive extrapolation ap-
proach from (Morato et al., 2019). We discuss the imple-
mentation steps and their convergence properties, pointing
out advantages and drawbacks and providing realistic sim-
ulation essays (Sec. 5).

3.1 Sequential qLPV MPC

Method Description: The core idea of the SQP method
(Cisneros and Werner, 2020) is the following: The MPC
optimisation problem is solved multiple times per sampling
period. At each iteration, the optimisation from Eq. (3) is
solved based on “frozen” predictions. These are generated
by plugging a “scheduling sequence” guess P̂k := col{ρ̂(k+

j)}T ,∀j ∈ N[0,Np−1] into Eq. (2). At each iteration, P̂k

is updated, until this guess converges to P̂k = Pk. The
solution to the QP is the same as from a “full-blown” NP.

The method starts with an initial guess P̂k. Then, the
internal state predictions of the MPC optimisation, de-
noted Xk := col{x(k + j)}T ,∀j ∈ N[1,Np], are used to
formulate the next guess, using the nonlinear scheduling

proxy function as follows: P̂k = fρ

[xT (k) , XT
k ]︸ ︷︷ ︸

X?
k


T

.



Advantages: The method guarantees convergence within
a relatively small number (around 3-5) of inner iterations.
Moreover, at each inner iteration, the problem is formu-
lated as a QP, based on the following prediction:

Xk =A(P̂k)x(k) + B(P̂k)Uk , (5)

being A(P̂k) and B(P̂k) nonlinear matrices on the future
scheduling parameters ρ(k + j)∀ j ∈ N[0,Np−1]. These
matrices maintain the same form at each iteration and,
thus, can be efficiently computed.

Limitations: The main restraint of this approach is that
the internal loop may take several iterations (QPs) to
converge. This is not desirable because the number of inner
iterations needed for convergence may require more time
than the available sampling period. In practice, a stop
criterion is added to the mechanism so that iterations stop
at a given threshold. A warm start can also be included
by shifting Xk−1 and P̂k−1 as the initial guesses for the
optimisation at sampling instant k.

3.2 Recursive qLPV MPC

Method Description: An alternative formulation to the
previous concept has been proposed in papers (Morato
et al., 2019, 2020b). While the first method results in an

SQP solution (since the QP is iterated until P̂k converges),
this second approach is based on a single QP coupled to
a recursive extrapolation method for P̂k. Accordingly, the
convergence of P̂k to Pk takes some samples to be achieved
and is ensured as long as the MPC is recursively feasible.

The extrapolation mechanism is implemented through:

P̂k = Φ(P̂k−1, X
?
k−1) = λP̂k−1 + σkX

?
k−1 , (6)

for which λ is a forgetting factor and σk is a time-varying
gain. This factor can be derived by the solution of a least-
square argument, imposing a time-varying auto-regressive
model for each entry of P̂k, or via Taylor expansion, taken

as
dfρ(X)
dX |X?

k
. Details are given in (Morato et al., 2020b).

Advantages: This approach does not require us to eval-
uate online fρ(X

?
k), which can be numerically expensive.

Therefore, the online computational burden is that of a
QP, which can be solved very fast by standard solvers.

Limitations: The convergence of P̂k → Pk is not achieved
within a single sampling period. Therefore, there appears
an inherent discrepancy between P̂k and Pk during the first
samples, which vanishes over time. Accordingly, during
these initial steps, the MPC solution is sub-optimal, which
may deteriorate performances.

3.3 Implementation

Both these previous methods can be implemented through
Algorithm 1. The application departs from an initial state
sequence X0, an initial scheduling sequence P0

2 , known
terminal ingredients, and a target reference goal zr

3 .
2 These vectors can be simply taken as Np repeated instances of
x(0) and ρ(0).
3 For regulation purposes, zr is nil, while for tracking purposes, it
comes from the offline solution of (4).

Any embedded hardware is suitable to implement this
Algorithm, as long as being able to solve QPs and perform
linear matrix operations and nonlinear vectorisations.

Algorithm 1 qLPV MPC from Secs. 3.1 and 3.2

Initialise: x(0) = x0, ρ(0) = ρ0, k = 0.
Require: Q, R, Np, zr.
Require: P0, X0, U0.
Loop:
• Step (1):

(A) (Cisneros and Werner, 2020): Loop until con-
vergence:

(i) Shift and update Xk =⇒ X?
k ;

(ii) Based on P̂k−1, compute the LTI predictions
with Eq. (5);

(iii) Solve the optimisation in Eq. (3);

(iv) Compute P̂k = fρ(X
?
k);

(B) (Morato et al., 2019): Solve P̂k =

Φ
(
P̂k−1, X

?
k−1

)
and compute the LTI

predictions with Eq. (5);
• Step (2): Solve the optimisation in Eq. (3) with

predictions from Eq. (5);
• Step (3): Take u(k) = u?(k) and apply this local

control to the process;
• Step (4): k ← k + 1.

End

3.4 Convergence of P̂k → Pk

In order to verify the convergence of scheduling trajectory
estimates obtained with these methods, we can invoke the
result from Newton SQPs, as demonstrated in (Cisneros
and Werner, 2020). Basically, a quadratic sub-problem
program of SQP algorithms can be derived by a second-
order approximation of the SQP optimisation cost and
linearisation of its constraints. Therefore, under the as-
sumptions from Sec. 2, the solution of Algorithm 1 is
equivalent to that of a quadratic sub-problem in standard
Newton SQP form, from which local convergence property
can be readily found. Note that if LDI is used to provide
the qLPV model, then the iterations of Algorithm 1 are
equivalent to those in the Newton SQP sub-problem, which
is identical to both the optimisation given through the
consecutive iterations Eq. (3) and the recursive operator
of Eq. (6) with the solution of Eq. (3). The sufficient
conditions, then, require local stability, which is ensured
through adequate terminal ingredients.

4. STABILITY AND OFFLINE PREPARATIONS

Next, we briefly detail how to construct the terminal
ingredients for Algorithm 1, in order to ensure stability
and recursive feasibility properties.

The usual approach resides in Xf and V (·) satisfy-
ing some conditions 4 w.r.t. a nominal feedback u =
K(x − xr). Consider that there exists a terminal state-
feedback gain K(ρ) and an ellipsoidal terminal set Xf :=

4 For notation lightness, we proceed with xr nil. The tracking
equivalency is easily done with dxr

dt
= 0 and by computing the

qLPV model with shifted states dynamics (x− xr).



{
x |xTP (ρ)x ≤ αP

}
with a sub-level cost V (x, ρ) :=

xTP (ρ)x. Under regular K-class properties on `(·) (lower
bounded) and V (·) (upper bounded), the following Theo-
rem gives the sufficient conditions for closed-loop stability
and recursive feasibility:

Theorem 1. Consider that the MPC is given by Eq. (3)
under a feedback u = K(ρ)x, with a terminal state set
given by Xf (ρ) and a terminal cost V (x, ρ). Assume that
the initial solution is feasible. Then, input-to-state stabil-
ity and recursive feasibility are ensured if the following
conditions hold ∀ρ ∈ P:
(C1) The origin lies in the interior of Xf ;
(C2) x+ := (A(ρ) +B(ρ)K(ρ))x lies within Xf , ∀x ∈ Xf ;
(C3) The following Lyapunov equation is verified ∀x ∈
Xf , ∀ ρ ∈ P and ∀ ∂ρ ∈ ∂P: V (x+, ρ+ ∂ρ)− V (x, ρ) ≤
−xTQx− xTKT (ρ)RK(ρ)x;
(C4) The image of the nominal feedback lies within the
admissible control domain: K(ρ)x ∈ U , ∀ρ ∈ P;
(C5) The terminal set Xf (ρ) is a subset of X .

The proof of Theo. 1 is standard (Mayne et al., 2000).
Accordingly, the following Theorem provides parameter-
dependent terminal ingredients which verify Theo. 1.

Theorem 2. The conditions (C1)-(C5) of Theo. 1 are satis-
fied if there exists a symmetric parameter-dependent pos-
itive definite matrix P (ρ) : Rnp → Rnx×nx , a parameter-
dependent rectangular matrix W (ρ) : Rnp → Rnu×nx ,
and a scalar 0 < α ∈ R such that Y (ρ) = (P (ρ))−1 >
0, W (ρ) = K(ρ)Y (ρ) and the following LMIs hold for all
ρ ∈ P and ∂ρ ∈ ∂P, under minα.

 Y (ρ) ? ? ?
(A(ρ)Y (ρ) +B(ρ)W (ρ)) Y (ρ+ ∂ρ) ? ?

Y (ρ) 0 Q−1 ?
W (ρ) 0 0 R−1

≥ 0 ,

[
αu2i I{i}W (ρ)
? Y (ρ)

]
≥ 0, i ∈ N[1,nu] ,[

αx2j I{j}Y (ρ)

IT{j}Y
T (ρ) Y (ρ)

]
≥ 0, j ∈ N[1,nx] .

The proof of Theo. 2 follows from (Cisneros and Werner,
2020), using α = α−1P . This Theorem ensures a posi-
tive definite parameter-dependent matrix Y (ρ) = P−1(ρ),
which gives the terminal ingredients V (·) and Xf . The-
orem 2 provides infinite-dimensional inequalities, which
must hold ∀ ρ ∈ P and ∀ ∂ρ ∈ ∂P. In practice, the
solution can be found by enforcing the inequalities over a
sufficiently dense grid of points (ρ, ∂ρ) along the P × ∂P
plane. Then, the solution can be verified over a denser
grid. The parameter dependency of P can be dropped if
the system is quadratically stabilisable, but this may result
in increased conservativeness.

Remark 1. The solution of Theo. 2 is a parameter-
dependent map Y (ρ) =

∑np
j=1 ρjYj . The online procedure,

nonetheless, depends on an inversion of Y (ρ) in order
to compute the terminal ingredients V and Xf at each
sampling instant. K(ρ) is a fictive feedback gain used only
to prove the stability conditions; the actual feedback is
that determined by the online optimisation procedure.

5. APPLICATION RESULTS

In this Sec., we provide two different application results
of the considered methods, which are henceforth denoted
Sequential qLPV MPC and Recursive qLPV MPC. The
following results are obtained using Matlab simulation
with the YALMIP and Gurobi solvers on a 2.4 GHz, 8 GB
RAM Macintosh computer, using high-fidelity nonlinear
models of the processes. SDPT3 was used to solve the LMIs
in Theo. 2.

5.1 Regulation: Semi-active Suspension System

Firstly, we consider the regulation problem of a semi-
active suspension system. This system is used to mitigate
the vertical oscillations of a car when road bumps are
encountered, thus improving comfort. Consider the corner
dynamics of a vehicle equipped with ER suspensions, as
detailed in (Morato et al., 2020b). A suspension system
connects the vehicle body (ms) and the wheel link (mus)
with a spring and a controllable damper. Let zs and
zus denote the vertical displacement of these two parts,
respectively. The road disturbance and the damper force
are denoted zr, FER, respectively. Use zd = zs − zus and
zw = zus − zr. From Newton’s law of motion, we obtain:

z̈s(t) =−kszd(t)− (c0 + cuu(t))żd(t)− FER(t) ,

z̈us(t) = +kzd(t) + (c0 + cuu(t))żd(t) + FER(t)− ktzw(t) ,

τḞER(t) =−FER(t) + fc tanh(k1zd(t) + c1żd(t))u(t) .

This system operates with a sampling period of Ts = 5 ms.
Considering states x = [zd, żs, zw, żus, FER]T , we obtain
the following qLPV matrices:

A(ρ) = Inx + Ts


0 1 0 −1 0

− ks
ms
− (c0+cuρ1)

ms
0 (c0+cuρ1)

ms
−1
ms

0 0 0 1 0
ks
mus

(c0+cuρ1)
mus

− kt
mus

− (c0+cuρ1)
mus

1
mus

0 0 0 0 −1
τ

 ,

B(ρ) = Ts
[

0 0 0 0 fc
τ ρ2

]T
, B2 = Ts [ 0 0 −1 0 0 ]

T
,

which relates to Eq. (2) with an additional term +B2żr(k)
on the state dynamics. The scheduling parameters are ρ :=

[ρ1 ρ2]
T

, where ρ1 := u ∈ [0 , 1] and ρ2 := tanh(Γx) ∈
[−1 , 1], with Γ = [k1 c1 0 −c1 0]. The parameter values
and constraints are provided in (Morato et al., 2020b).

Consider a simulation road scenario of a sequence of
three 10 mm vertical bumps. The NMPCs are tuned with
a prediction horizon of 20 steps, using unitary weights
(Q = Inx , R = Inu). An Niter = 5 iteration threshold
for the Sequential qLPV MPC, and λ = 1 and σk =
0 in Eq. (6) for the Recursive method 5 . Consider an

initial condition of x0 = [0.001, −0.001, 0.001, 0.001, 0]
T

.
Figure 1 provides the road scenario and the corresponding
control law (PWM signal that regulates the damper force).
Accordingly, Fig. 2 presents some of the state trajectories
(due to lack of space). Clearly, regulation is obtained with
both NMPC techniques, and the road bumps are rejected
in steady state.
5 These weights imply a higher degree of conservatism with the latter
method, since we basically consider that the scheduling trajectory is
constant.
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Both strategies are efficient for the regulation. Anyhow,
we further assess the obtained results with the RMS index
of the stage cost `(x, u) along the whole simulation (Tab.
1). We can thus conclude that the performances obtained
with the Sequential method are better than those with the
Recursive tool (16.5% average performance enhancement).
This is mainly because the recursive extrapolation leads
to model-process mismatches during the first samples
after each bump, which means that the NMPC is sub-
optimal while P̂k 6= Pk and thereby generates larger
overshoots. We stress that the Sequential method ensures
the convergence of the scheduling sequence even with the
Niter threshold. Nonetheless, we note that the average
online computational stress (tc index in Tab. 1) with the
recursive solution is more than 10 times smaller than
the one with the SQPs since the nominal predictions
are linear at each sampling instant and only one QP is
solved per sample, while at least Niter QPs are solved
with the Sequential scheme. The selection of the method
will certainly depend on the hardware capabilities and the
available sampling period. If the system had more states,
tc < Ts could have been violated with the first method.

5.2 Tracking: Quadruple-tank Process

Now, consider the quadruple tank process from (Johans-
son, 2000): Four interconnected tanks (two on top of two)
are regulated by two pumps and two valves, which deter-
mine the flow of circulating water:

ḣ1(t) =− a1
A1

√
2gh1(t) +

a3
A1

√
2gh3(t) +

γ1(t)k1
A1

u1(t) ,

ḣ2(t) =− a2
A2

√
2gh2(t) +

a4
A2

√
2gh4(t) +

γ2(t)k2
A2

u2(t) ,

ḣ3(t) =− a3
A3

√
2gh3(t) +

(1− γ2(t))k2
A3

u2(t) ,

ḣ4(t) =− a4
A4

√
2gh4(t) +

(1− γ1(t))k1
A4

u1(t) .

Each hi(t) represents the water level at the i-th tank;
uj represents the power of the j-th pump, for which the
corresponding flow is kjuj(t), and each γj gives opening
percentage of the j-th valve, directing more/less flow to
the upper/lower tanks. We assume that all levels are
measured. The tank cross sections Ai are of 1 cm2, while
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Fig. 3. Four-tank system: Reference tracking results.

the outlet hole cross sections ai are of 0.05 cm2. The pump
parameters kj are of 1.4 cm3/Vs. The process constraints
are: hj ∈ [0.1, 10],∀j ∈ N[1,2] (level, process variable);
uj ∈ [0.05, 5] V,∀j ∈ N[1,2] (pump flow, control input);
γj ∈ [1, 100] %,∀j ∈ N[1,2] (valve opening).

Considering a sampling period of Ts = 250 ms, the exact
qLPV realisation from Eq. (2) is obtained with:

A(ρ) = Inx + Ts


−a1
√
2gρ1

A1
0 a3

√
2gρ3
A1

0

0 −a2
√
2gρ2

A2
0 a4

√
2gρ4
A2

0 0 −a3
√
2gρ3

A3
0

0 0 0 −a4
√
2gρ4

A4

 ,

B = Ts

[
γ1k1
A1

0 0 (1−γ1)k1
A4

0 γ2k2
A2

(1−γ2)k2
A3

0

]T
.

The scheduling parameters ρ = col{ρj}, with ρj(k) :=

(hj(k))
− 1

2 ∈ [0.31 , 3.16] , ∀j ∈ N[1,4]. We note that valve
opening signals γj = 1 are assumed constant and known.

The application of the qLPV MPC methods is made using
the same values for Niter, λ, and σ from the previous
essay. In this study, we add a complementary stop criterion
to the SQP method: the internal loop stops if ‖P̂k −
Pk‖∞ ≤ 10−3, which is a negligible bound for this system.

A tracking objective is considered: `(x, u) := ‖(x−xr)‖2Q+

‖(u− ur)‖2R, being (xr, ur) admissible piece-wise constant
reference signals (that satisfy Eq. (4)). This objective
concerns the first and second level signals. We use a
prediction horizon of Np = 10 samples and weighting
matrices Q = diag([10 10 0 0]), and Inu . The following
simulation scenario is considered: The initial condition is
x(0) = [5 5 5 5]

T
and u(0) =

[
5
√

0.5 5
√

0.5
]
.

Figure 3 presents the tracking performances for the two
level signals. Evidently, both qLPV MPC methods are
able to steer the states to the admissible targets while
respecting constraints on x and u. Figure 4 shows the cor-
responding control inputs. All state trajectories converge
in finite time with small overshoots and no oscillations.
Both performances are numerically equivalent. This simi-
larity resides in the Sequential method requiring no more
than one or two iterations of the internal loop in over 70 %
of the sampling instants. Nevertheless, we must stress that
the Recursive approach is over 2.5 times faster (on average)
than the Sequential technique in computing the control
action, as gives Tab. 1.

5.3 Discussion

Based on these two realistic essays, we can conclude that
both qLPV MPC methods are interesting options for the
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Fig. 4. Four-tank system: Control signals.

Table 1. Performance results.

Regulation: Suspension system r{`(·)} tc
Sequential qLPV MPC (Sec. 3.1) 4.548 3.795 ms

Recursive qLPV MPC (Sec. 3.2) 5.445 0.377ms

Tracking: Four-tank system r{`(·)} tc
Sequential qLPV MPC (Sec. 3.1) 0.102 49.40 ms

Recursive qLPV MPC (Sec. 3.2) 0.102 18.90ms

predictive control of nonlinear processes without the need
for NP-hard solutions. Both methods generate good esti-
mates for the scheduling trajectories. The SQP technique
yields overall faster convergence, while the convergence of
the recursive scheme requires some samples, which may
lead to instantaneous performance degradation.

We stress that this performance deterioration may be
tolerable since the recursive method evaluates the control
law significantly faster. The average online computational
stress (tc) with the recursive solution is, in both cases,
much smaller than the one with the SQPs. The SQP
method requires the solution of (at most) Niter QPs
coupled with the nonlinear vector-wise operation of fρ(·),
which may impede real-time applications for ultra-fast
sampling rates. Accordingly, the Recursive method is
more flexible for such fast systems. Robustness w.r.t. the
(bounded) model-process mismatches that occur while

P̂k 6= Pk in the recursive scheme can be ensured through
the terminal set Xf , as in standard bounded disturbance
rejection problems.

We also note that as long as if the closed-loop system is
stable (implied through the terminal ingredients), there
arise no control loss issues with these qLPV methods, since
the model in Eq. (2) is an exact realisation of the nonlinear
dynamics from Eq. (1). This is an advantage that must be
emphasised, given that NMPCs with real-time iteration
solutions, which are widely used, may have control losses
due to the successive linerisations.

6. CONCLUSION

In this paper, we revisited some novel NMPC formulations
based on qLPV embedding. These methods provide real-
time NMPC solutions since the qLPV realisation offers
linear predictions at each sampling period. Two different
methods are detailed; both solve the NMPC problem by es-
timating the future behaviour of the scheduling variables.
The first iterates the MPC optimisation multiple times,
using the state predictions to compute the scheduling
sequence; the second uses a recursive extrapolation mech-
anism to guess the evolution of these variables along the
horizon. For illustration purposes, we provide simulation
results of a semi-active suspension system (regulation) and
a quadruple-tank process (tracking). As evidenced, good
performances are obtained with relatively small numer-
ical stress. Evidently, the qLPV MPC framework offers

comparable qualities to modern solver-based NMPC so-
lutions, such as ACADO, CasADi, and GRAMPC. The
main advantage is that no linearisations are performed,
and only QP solutions are required, which is tackled by
most standard solvers.

The future promise of NMPC through qLPV embedding is
vast since only a handful of papers have investigated this
topic. Formal comparisons to the solver-based solutions,
for instance, are still lacking, as well as experimental
validation of the topics herein discussed.
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