One level density of low-lying zeros of quadratic Hecke L-functions to prime moduli - Archive ouverte HAL
Journal Articles Hardy-Ramanujan Journal Year : 2021

One level density of low-lying zeros of quadratic Hecke L-functions to prime moduli

Peng Gao
Liangyi Zhao
  • Function : Author

Abstract

In this paper, we study the one level density of low-lying zeros of a family of quadratic Hecke L-functions to prime moduli over the Gaussian field under the generalized Riemann hypothesis (GRH) and the ratios conjecture. As a corollary, we deduce that at least 75% of the members of this family do not vanish at the central point under GRH.
Fichier principal
Vignette du fichier
43Article12.pdf (337.53 Ko) Télécharger le fichier
Origin Files produced by the author(s)

Dates and versions

hal-03208534 , version 1 (26-04-2021)

Identifiers

Cite

Peng Gao, Liangyi Zhao. One level density of low-lying zeros of quadratic Hecke L-functions to prime moduli. Hardy-Ramanujan Journal, 2021, Volume 43 - Special Commemorative volume in honour of Srinivasa Ramanujan - 2020, pp.173-187. ⟨10.46298/hrj.2021.7461⟩. ⟨hal-03208534⟩
36 View
676 Download

Altmetric

Share

More