Robust Nonlinear Predictive Control through qLPV embedding and Zonotope Uncertainty Propagation - Archive ouverte HAL
Communication Dans Un Congrès Année : 2021

Robust Nonlinear Predictive Control through qLPV embedding and Zonotope Uncertainty Propagation

Résumé

This paper presents a novel robust Model Predictive Control (MPC) algorithm for nonlinear systems represented through quasi-Linear Parameter Varying (qLPV) models. The nominal MPC predictions are made considering a frozen scheduling parameter guess, which is computationally cheaper than nonlinear predictions, while zonotopes bound the disturbance propagation along the prediction. These sets are computed with respect to the bounds of the variation of scheduling parameters, offering reduced conservatism of the closed-loop dynamics and ensuring input-to-state stability and recursive feasibility properties. A DC-DC converter benchmark example is used to illustrate the advantages of the proposed method.
Fichier principal
Vignette du fichier
LPVS21_qLPVZonotope.pdf (380.52 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03207173 , version 1 (24-04-2021)

Identifiants

Citer

Marcelo Menezes Morato, Victor M Cunha, Tito L M Santos, Julio E Normey-Rico, Olivier Sename. Robust Nonlinear Predictive Control through qLPV embedding and Zonotope Uncertainty Propagation. LPVS 2021 - 4th IFAC Workshop on Linear Parameter Varying Systems, Jul 2021, Milan, Italy. ⟨10.1016/j.ifacol.2021.08.577⟩. ⟨hal-03207173⟩
102 Consultations
127 Téléchargements

Altmetric

Partager

More