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Abstract: This paper presents a novel robust Model Predictive Control (MPC) algorithm for
nonlinear systems represented through quasi-Linear Parameter Varying (qLPV) models. The
nominal MPC predictions are made considering a frozen scheduling parameter guess, which is
computationally cheaper than nonlinear predictions, while zonotopes bound the disturbance
propagation along the prediction. These sets are computed with respect to the bounds of the
variation of scheduling parameters, offering reduced conservatism of the closed-loop dynamics
and ensuring input-to-state stability and recursive feasibility properties. A DC-DC converter
benchmark example is used to illustrate the advantages of the proposed method.

Keywords: Robust Model Predictive Control, Quasi-Linear Parameter Varying Systems,
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1. INTRODUCTION

Model Predictive Control (MPC) is well established and
widely used for the optimal regulation of constrained dy-
namic systems (Camacho and Bordons, 2013). Yet with
great practical value, the standard MPC design was orig-
inally attached to the idea of a nominal linear time-
invariant (LTI) prediction model. Albeit nominal LTI
MPC inherently offering a certain degree of robustness,
it lacks guarantees of recursive feasibility or closed-loop
stability at the presence of disturbances.

Since the 00’s, literature has provided robust MPC tools,
such as terminal ingredients (Mayne et al., 2000) and in-
tegral quadratic constraints (Cisneros and Werner, 2018),
which enable input-to-state stability and constraint satis-
faction for bounded disturbances. Nonetheless, the appli-
cation of robust nonlinear MPC (NMPC) is not trivial and
comes with increased numerical burden, which becomes
an impediment for real-time applications (Allgöwer and
Zheng, 2012).

In parallel to the theoretical establishment of robust MPC,
the Linear Parameter Varying (LPV) toolkit has been
brought to focus (Mohammadpour and Scherer, 2012;
Sename et al., 2013). LPV models represent nonlinear dy-
namics with the use of known, bounded scheduling param-
eters ρ. Recent advances on NMPC algorithms conceived
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through quasi-LPV (qLPV) embedding have been pre-
sented, e.g. Morato et al. (2020b) and references therein,
enabling fast operation. The elegance of the qLPV em-
bedding is that the ”full-blown” nonlinear predictions can
be replaced by sequential linear predictions (Abbas et al.,
2018; González Cisneros and Werner, 2020).

With respect to this context, we investigate the problem
of robust NMPC based on nominal predictions obtained
through quasi-Linear Parameter Varying (qLPV) embed-
ding, as done in (Morato et al., 2019; Cisneros and Werner,
2017). Based on the one-steap-ahead disturbance propa-
gation, we apply tightened constraints over the nominal
qLPV predictions, enforcing the satisfactions of the perfor-
mance requirements by the real system trajectories (Santos
et al., 2019; Köhler et al., 2018). The main novelty of the
proposed approach is that it does not require sequential
QPs or estimation of the future scheduling variables, as in
the prior, but binds the prediction error within zonotopes.

In the nonlinear setting, the majority of uncertainty prop-
agation methods, such as Lipschitz constants and K-
functions, result in exceeding conservatism, limiting per-
formances and reducing the closed-loop domain of at-
traction (Marruedo et al., 2002). Nonetheless, the use of
zonotopes comes as an alternative, offering representation
simplicity and flexibility, as well as low implementation
cost. These sets are symmetrical, convex, and compact
polyhedrons, originally used for state estimation and fault
detection (Pourasghar et al., 2019).



In this paper, we provide a new method for the uncertainty
propagation considering nonlinear systems with nominal
qLPV predictions, applying the mean value zonotope ex-
tension framework from Alamo et al. (2005); Cunha and
Santos (2020). Additionally, we ”robustify” the parameter-
dependent terminal ingredients from González Cisneros
and Werner (2020), which now ensure input-to-state sta-
bility and recursive feasibility properties even in the case
of (bounded) additive disturbances and model prediction
uncertainties. The main restricting hypothesis of the pro-
cedure is the necessity of bounds upon the variation of the
scheduling variables between sampling instants.

The rest of this paper is organised as follows. Sec. 2
provides preliminary discussions, the problem setup, and
the qLPV terminal ingredients. Sec. 3 details the use of
zonotopes to bound the qLPV nominal prediction errors.
Sec. 4 illustrates a DC-DC converter case study application
of the method, together with comparisons to other NMPC
algorithms from the literature. General conclusions are
drawn in Section 5.

Notation. The index set N[a,b] represents {i ∈ N | a ≤
i ≤ b}, with 0 ≤ a ≤ b. The identity matrix of
size j is denoted as Ij ; I{j} denotes the j-th row of Ij ;
col{·} denotes the vectorization of the entries and diag{v}
denotes the diagonal matrix generated with the line vector
v. 1n×m stands for the n × m vector of unit entries;
The value of a given variable v(k) at time instant k + i,
computed based on the information available at instant k,
is denoted as v(k+i|k). K refers to the class of positive and
strictly increasing scalar functions that pass through the
origin. A C1 function f is such that it is differentiable with
continuous derivatives. In this case, ∇T f : Rm → Rn×m
denotes its Jacobian matrix. Consider sets A,B ⊂ Rn,
C ⊂ Rm and a matrix R ∈ Rn×m. The Minkowski set
addition is defined by A ⊕ B := {a+ b | a ∈ A , b ∈ B},
while the Pontryagin set difference is defined by A 	
B := {a | a ⊕ B ⊆ A}. A linear mapping is RA =
{y ∈ Rn : y = Ra, a ∈ A ⊆ Rm, R ∈ Rn×m}, while
the cartesian product holds as A×C = {z ∈ Rn+m : z =
(aT cT )T , a ∈ A, c ∈ C}.The unitary m-dimensional box is
denoted Bm∞ = {ξ ∈ Rm : ||ξ||∞ ≤ 1}. The set of real
compact intervals is given by I = {[a, b], a, b ∈ R, a ≤ b}.
An interval matrix J ∈ In×m has mid(J) and rad(J)
denoting its middle point and radius, respectively. ‖ν‖
denotes the 2-norm.

2. ROBUST NMPC THROUGH QLPV EMBEDDING

2.1 The Nonlinear System

We consider the following discrete-time nonlinear system:

x(k + 1) = f (x(k), u(k)) + Ew(k) , (1)

being k ∈ N the sampling instant, x ∈ Rnx the vector of
states, u ∈ Rnu the vector of control inputs, and w ∈ Rnw
an unknown additive disturbance, assumed bounded to a
compact set W ⊂ Rnw is such way that ‖w(k)‖ ≤ w,∀k.
The states x are measurable at all sampling instants.

The system in Eq. (1) is subject to state and input
constraints, which define admissible operation, as follows:
x ∈ X := {xj ∈ R : ‖xj‖ ≤ xj ,∀j ∈ N[1,nx]} and
u ∈ U := {ui ∈ R : ‖ui‖ ≤ ui,∀i ∈ N[1,nu]}.

Without loss of generality, the origin is considered an
equilibrium point of Eq. (1), in such way that f(0, 0) =
0. Moreover, the nonlinearity f(x, u) is of class C1 over
Z := X × U . The constraint set are also expressed as:

X := {x ∈ Rnx : Hxx ≤ gx} ,

U := {u ∈ Rnu : Huu ≤ gu} .

2.2 qLPV Embedding

The nonlinear system satisfies the Linear Differential In-
clusion property (Shamma, 2012), which means that it
can be embedded under a qLPV formalism. Suppose
that ∃H(x, u) ⊆ Rnx×nx ,∀(x, u) ∈ Z s.t. f(x, u) :=

H(x, u) [ x u ]
T

. Then, Eq. (1), for all (x, u) ∈ Z, equiva-
lent to:

x(k + 1) =A(ρ(k))x(k) +B(ρ(k))u(k) + Ew(k) , (2)

ρ(k) = fρ(x(k)) ∈ P . (3)

The model in Eq. (2) is qLPV, with an endogenous nonlin-
ear function fρ(·) that results in the scheduling parameters
ρ(k), which are bounded and known at each instant k. We
note, nonetheless, that they are generally unknown for any
future instant k+ j , ∀j ∈ N[1,∞]. We consider the follow-

ing set: P :=
{
ρj ∈ R | ρ

j
≤ ρj ≤ ρj ,∀j ∈ Z[1,nρ]

}
.

Assumption 1. The scheduling variables ρ(k) evolve along
the horizon with bounded rates of variation. This is: δρ(k+
1) = (ρ(k + 1)− ρ(k)) ∈ δP, with:

δP :=
{
δρj ∈ R : δρ

j
≤ δρj ≤ δρj ,∀j ∈ N[1,np]

}
. (4)

Remark 1. Assuming bounds upon the variation of schedul-
ing parameters between sampling instants is quite reason-
able in many real LPV applications (Jungers et al., 2011).
Nonetheless, if the qLPV-embedded nonlinear dynamics
are s.t. δρ is unbounded, the proposed method can be
deployed considering uncertainty propagation as based
on the whole scheduling set P, which leads to further
conservatism, but with no loss of generality.

2.3 Closed-loop Paradigm

We consider that the qLPV system is regulated according
to the following LPV state-feedback control law:

u(k) = π (x(k), v(k)) = K(ρ(k))x(k) + v(k) , (5)

where the virtual input v(k) is used to ensure constraints
satisfaction, and the parameter-dependent feedback gain
K(ρ(k)) attenuates the propagation of disturbances. The
closed-loop dynamics are given by:

x(k + 1) = (A(ρ) +B(ρ)K(ρ))x(k) +B(ρ)v(k) + Ew(k) ,

=Aπ(ρ)x(k) +B(ρ)v(k) + Ew(k) . (6)

We note that the process constraints
[
xT (k) uT (k)

]
∈ Z

can be expressed in terms of the closed-loop dynamics and

virtual entry as

(
x(k)
v(k)

)
∈ Zπ, with:



Zπ :=

{
z ∈ Rnx+nu :

(
Hx 0

HuK(ρ) Hu

)
z ≤

(
gx
gu

)}
.(7)

The control law in Eq. (5) will be defined by an MPC
algorithm based on a frozen prediction model, which
gives the sequence of future virtual inputs v[k,k+Np−1] =
{v(k|k) . . . v(k +Np − 1|k)} as output, considering a pre-
diction horizon of Np steps. The MPC recursive feasibility
property ensured through terminal ingredients (Theorem
1) is not violated by the time-varying nature of Zπ, since
the energy-dissipation arguments hold for the wider set Z.

We proceed by detailing disturbance propagation, the pre-
dictive control design, and the used terminal ingredients.

2.4 Disturbance Propagation

Given an initial condition x(k) ∈ Rn, the future trajectory
of the closed-loop system in Eq. (6) evolves, for j ≥ 0, as:

x(k + j) = φπ(j, x(k),v[k,k+j−1],w[k,k+j−1], ρ[k,k+j−1])

:=Aj(ρ[k,k+j−1])x(k) +Bj(ρ[k,k+j−1])v[k,k+j−1]

+ Ejw[k,k+j−1] , (8)

where w[k,k+j] = col{w(k + j|k)},∀j = N[0,j] gives the
future disturbances. It is worth noting that ρ[k,k+j] =
col{ρ(k + j|k)},∀j = N[0,j] gives the future values of the
scheduling parameters, which are unknown (function of
the future states). Matrices Aj , Bj and Ej are analytically
given in (González Cisneros and Werner, 2020).

Since both ρ[k,k+j−1] and w[k,k+j−1] are unknown from the
viewpoint of sampling instant k, we pursue the develop-
ment of an MPC algorithm based on nominal prediction
with a ”frozen” qLPV scheduling guess, as if ρ(k) would
remain constant along the future horizon, and as if the
disturbances were null. These nominal predictions are:

x(k + j|k) = φπ(j, x(k),v[k,k+j−1],0, ρ(k)1np×j) (9)

=Aj(Iρ(k))x(k) +Bj(Iρ(k))v[k,k+j−1] ,

where Iρ(k) := ρ(k)Inp×j denotes the frozen scheduling
guess that replaces the real future scheduling values.

There is a clear mismatch between the nominal predictions
(9) and real qLPV trajectories (8). Therefore, in order to
guarantee recursive feasibility of the MPC, one-step ahead
disturbance propagation sets S(j) ⊆ Rn, j = 0 . . . Np are
developed (Santos et al., 2019).

Condition 1. The one-step-ahead disturbance propagation
sets S(j), j ∈ N[0,Np], must be compact and satisfy the
following conditions:

(1) S(0) contains EW.
(2) For all xa, xb ∈ Rnx , v ∈ Rnu , ρa, ρb ∈ P and

j ∈ N[1,Np], with (xa, v) ∈ Zπ 	 (S(j − 1) × {0}),
(xb − xa) ∈ S(j − 1), and (ρb − ρa) ∈ δP, the
set S(j) must be such that (Aπ(ρb)xb +B(ρb)v) −
(Aπ(ρa)xa +B(ρa)v) ∈ S(j).

With xa = x(k + 1|k) = A(ρa)x + B(ρa)v, xb = x(k +
1) = A(ρb)x+B(ρb)v, ρa = ρ(k−1) and ρb = ρ(k), we have
xb− xa ∈ EW and (ρb− ρa) ∈ δP. It follows by induction
from Condition 1 that x(k+ j|k+ 1) ∈ x(k+ j|k)⊕S(j −

1), j = 1 . . . Np+1 for any admissible sequence v[k,k+j−1].
The sets S(j) thus bound the one-step-ahead prediction
error between the nominal MPC predictions and the real
trajectories.

We note that, in the linear setting, the smallest sets that
satisfy Condition 1 can be directly computed through
linear expansions of the closed-loop dynamics (Ferramosca
et al., 2012). Anyhow, for generic nonlinear systems, there
are no efficient algorithms for the exact computation of
these sets (Köhler et al., 2018), which means that more
conservative strategies, taking into account upper bounds
on the uncertainty propagation through the nonlinear
system, must be sought.

One simple alternative for the computation of these sets in
the nonlinear case is to bound the disturbance propagation
with Lipschitz constants, e.g. Theorem 1 of (Morato et al.,
2020a). In this case, for nonlinear closed-loop dynamics
x(k + 1) = fπ(x(k), v(k)) + w(k), Lipschitz constant
Γ ∈ R satisfying inequality ‖fπ(xa, v) − fπ(xb, v)‖ ≤
Γ‖xa−xb‖ for any (xTa , v

T )T , (xTb , v
T )T ∈ Zπ and S(0) :=

{x ∈ Rnx : ‖x‖ ≤ w} ⊇ EW. Then, the Lipschitz sets
S(j),∀j ∈ N[0,Np] that satisfy the one-step-ahead distur-
bance propagation condition are:

S(j) :=
{
x ∈ Rnx : ‖x‖ ≤ Γjw

}
,∀j ∈ N[0,Np] . (10)

Lipschitz disturbance propagation sets, in the form of
Eq. (10), are often quite conservative, since they inher-
ently consider the worst-case disturbance propagation in
all directions. Less conservative sets can be obtained by
zonotope-based disturbance propagation methods, as de-
scribed in (Cunha and Santos, 2020).

Furthermore, predictions that rely directly on nonlinear
models result in nonlinear and non-convex optimisation
problems, which are computationally costly and do not
guarantee global optimality. Herein, we provide an ex-
tension of the zonotopic disturbance propagation method
considering the qLPV setting, developing zonotopes S(j)
that satisfy Condition 1.

Remark 2. The qLPV embedding in Eq. (2) stands for
a realisation of the nonlinear dynamics with only state-
dependent scheduling parameter. This framework holds
for many applications. Nevertheless, in some cases, the
scheduling parameters are state- and input-dependent, i.e.
ρ = fρ(x, u). Thereby, alternative formulations to Condi-
tion 1 should be sought, since the uncertainty will prop-
agate along the horizon depending on the future control
inputs, which may belong to a wide set, thus leading to
poor performances. One option is to represent the system
as nonlinear parameter varying (NLPV), with an explicit
input-dependent nonlinearity that can be handled with
Lipschitz propagation, as done in (Morato et al., 2020a).

2.5 Controller Design

This process must be regulated in such way that the state
trajectories are steered to the origin, in an admissible
manner, despite disturbances and the discrepancy between
the nominal prediction model and the real qLPV model.
As discussed, we apply a robust MPC scheme, for which
contracted constraints are used. Considering an initial



constraint set Zπ(0) = Zπ, the following sets for j ∈
N[1,Np] are iteratively taken as:

Zπ(j + 1) =Zπ(j)	 (S(j)× {0}) . (11)

Therefore, at each sampling instant k, we measure the
state x(k), compute the scheduling parameter ρ(k), and
solve the following optimization problem, which embeds
the performance objectives of the system, as well as the
operational constraints:

min
v[k,k+Np−1]

V (x(k +Np|k)) (12)

+

Np−1∑
j=0

` (x(k + j|k), v(k + j|k))

s.t. x(k + j + 1|k) = Aπ(ρ(k))x(k + j|k) (13)

+B(ρ(k))v(k + j|k), j ∈ N[0,Np−1]

(xT (k + j|k) vT (k + j|k))T ∈ Zπ(j), j ∈ N[0,Np−1]

x(k +Np|k) ∈ Xf , (14)

where `(x, v) = ‖x‖2Q + ‖v‖2R is a quadratic stage cost,

V (·) is a terminal cost and Xf is a terminal set. We
denote v?[k,k+Np−1] as the optimal solution of this problem,

of which the first entry v?(k|k) is applied to the process
according to Eq. (5).

2.6 Terminal Ingredients

We proceed by detailing the terminal ingredients and
the feedback gain such that input-to-state stability and
recursive feasibility properties are ensured.

In order to ensure these properties, first of all, the cost
functions ` and V must be K-class bounded, as details
Mayne et al. (2000):

`(x, v)≥ β`(‖x‖),∀x ∈ X , β`(·) ∈ K-class , (15)

0 ≤ V (x)≤ βV (‖x‖),∀x ∈ X , βV (·) ∈ K-class . (16)

In this paper, we choose parameter-dependent quadratic
terminal ingredients, being Xf :=

{
x |xTP (ρ)x ≤ 1

}
an

ellipsoidal terminal set and a sub-level Lyapunov terminal
cost: V (x) = xTP (ρ)x. Likewise, we consider a terminal
qLPV feedback K(ρ), which is given in terms of the
positive-definite matrix P (ρ).

The terminal set Xf must be robust positively invariant
regarding the closed-loop dynamics of Eq. (6), as provide
the following Theorems.

Theorem 1. Mayne et al. (2000)
Suppose ∃u = K(ρ)x. Consider that the MPC is given
by Eq. (12), with a terminal state set given by Xf (ρ) and
a terminal cost V (x, ρ). Then, input-to-state stability is
ensured if the following conditions hold ∀ρ ∈ P:
(C1) The origin lies in the interior of Xf (ρ);
(C2) Any consecutive state to x, in closed-loop given by
(A(ρ) +B(ρ)K(ρ))x lies within Xf (ρ);
(C3) The discrete Lyapunov equation is verified within
this invariant set, this is, ∀x ∈ Xf (ρ) and ∀ ρ ∈ P and
∀ δρ ∈ δP: V ((A(ρ+B(ρ)K(ρ))x, ρ+ δρ) − V (x, ρ) ≤
−xTQx− xT (K(ρ)TRK(ρ)x.

(C4) The image of the nominal feedback lies within the
admissible control domain: K(ρ)x ∈ U , ∀ρ ∈ P.
(C5) The terminal set Xf (ρ) is a subset of X .

Assuming that the initial solution of the MPC problem
v?[0,Np−1] is feasible, then, the MPC is recursively feasible,

stabilizing the state origin.

Proof 1. Refer to (Mayne et al., 2000). �
Theorem 2. Robust Positively Invariant Terminal set
Assume that there exists an ellipsoidal terminal set Xf .
Xf is a robust positively invariant set iff, for any x ∈ Xf

and ρ ∈ P, i.e. xTP (ρ)x ≤ 1, it follows that:

xTATπ (ρ)P (ρ+ δρ)Aπ(ρ)x≤ 1 . (17)

Proof 2. It is trivial to verify Eq. (17) by using x(k), x(k+
1) ∈ Xf ,∀k ∈ N. �
Theorem 3. Terminal Ingredients
The conditions (C1)-(C5) of Theorem 1 and the inequal-
ity of Theorem 2 are satisfied if there exist a symmet-
ric parameter-dependent positive definite matrix P (ρ) :
Rnp → Rnx×nx , a parameter-dependent rectangular ma-
trix W (ρ) : Rnp → Rnu×nx , and a scalar 0 < λ ∈ R such
that Y (ρ) = (P (ρ))−1 > 0, W (ρ) = K(ρ)Y (ρ) such
that LMIs (19)-(21) and the BMI (18) hold for w† given
as the vertices of S(Np), and for all ρ ∈ P and δρ ∈ δP,
under the minimization of log det{Y (ρ)}. λY (ρ) ? ?

0 (1− λ) ?
A(ρ)Y (ρ) +B(ρ)W (ρ) w† Y (ρ+ δρ)

> 0 ,(18)

 Y (ρ) ? ? ?
(A(ρ)Y (ρ) +B(ρ)W (ρ)) Y (ρ+ δρ) ? ?

Y (ρ) 0 Q−1 ?
W (ρ) 0 0 R−1

≥ 0 ,(19)

[
u2
i I{i}W (ρ)
? Y (ρ)

]
≥ 0, i ∈ N[1,nu] , (20)[

x2
j I{j}Y (ρ)

IT{j}Y
T (ρ) Y (ρ)

]
≥ 0, j ∈ N[1,nx] . (21)

The proof of Theorem 3 is provided in the Appendix. This
Theorem ensures a positive definite parameter dependent
matrix P (ρ) which is used to compute the MPC terminal
ingredients V (·) and Xf such that input-to-state stability
of the closed-loop is guaranteed. Furthermore, when the
MPC is designed with these terminal ingredients, for any
initial condition x(0) ∈ Xf , the MPC is recursively
feasible for all k > 0.

Remark 3. The BMI in Theorem 3 can be solved through
simple bisection search over the optimization plane since
0 < λ ≤ 1, by construction, as argues Yang et al. (2016).

Remark 4. LMIs (20)-(21) in Theorem 3 require box-type
constraints on each ui and xj . Nonetheless, these can
be converted into more generic polyhedral constraints, if
necessary. We chose box-type constraints for the simplicity
of the proofs.

Remark 5. Theorem 3 provides infinite-dimensional in-
equalities, which must hold ∀ ρ ∈ P and ∀ δρ ∈ δP.
In practice, the solution can be found by enforcing the
inequalities over a sufficiently dense grid of points (ρ, δρ)
along the P × δP plane. Then, the solution can be verified



over a denser grid. The parameter-dependency of P may
be dropped if the system is quadratically stabilizable, but
this may result in quite conservative performances.

Remark 6. The solution of Theorem 3 is a parameter-
dependent Y (ρ) =

∑np
j=1 ρjYj . The online procedure,

nonetheless, depends on a inversion of Y (ρ) to compute
V , K(ρ) and Xf , at each sampling instant.

3. UNCERTAINTY PROPAGATION VIA
ZONOTOPES

Zonotopes are a particular class of convex, compact, and
symmetrical polyhedrons (Pourasghar et al., 2019), which
can be described by a Minkowsky sum of line segments or
by the affine image of a unitary box Bng∞ :

Z = {G, c} = c⊕GBng∞ , (22)

where c ∈ Rn is the center of the zonotope and its shape
is given by the rows of G ∈ Rn×ng (generators). The
number of generators ng ≥ n defines the complexity of
the zonotope; n = ng defines a parallelotope.

The use of zonotopes for set-based state estimation and
disturbance propagation is tied to their simplicity and
to the numerical efficiency of linear transformations and
Minkowsky sums of zonotopes (Alamo et al., 2005), as well
as the Pontryagin difference of a polyhedron by zonotope
(Alvarado, 2007). Given Z1 = {G1, c1}, Z2 = {G2, c2} ⊆
Rn, R ∈ Rm×n, it follows that:{

RZ1 = {RG1, Rc1} ,
Z1 ⊕ Z2 = {(G1G2), c1 + c2} .

(23)

We aim to compute zonotopic reachable sets S(j),∀j ∈
N[0,Np] that satisfy Condition 1. For such, we develop
Theorem 4, based on Lemma 1.

Lemma 1. Consider a centered zonotope X = MBng∞ ⊆
Rm, an interval matrix J ∈ In×m, and a zonotope family
Z = JX. A zonotopic inclusion is defined by:

�(Z) := mid(J)X ⊕ PBng∞ , (24)

where P is a diagonal matrix such that:

Pii =

ng∑
j=1

m∑
k=1

rad(J)ik|Mkj |,∀i ∈ N[1,n] . (25)

It holds that Z ⊆ �(Z).

Proof 3. Refer to (Rego et al., 2020). �

Theorem 4. Consider the qLPV system described in Eq.
(6), with constraints (x(k), v(k)) ∈ Zπ, disturbances
w(k) ∈ W and scheduling parameters ρ(k) ∈ P, δρ(k) ∈
δP. Let Z ⊆ Rnx+nu ,S0 ⊆ Rnx be zonotopes and
A,∆A ∈ Inx×nx ,∆B ∈ Inx×nu interval matrices satisfying
EW ⊆ S0, Zπ ⊆ Z, Aπ(ρa) ∈ A, Aπ(ρb) − Aπ(ρa) ∈ ∆A

and B(ρb)−B(ρa) ∈∆B for all ρa, ρb ∈ P, ρb − ρa ∈ δP.
The sets S(j), j ∈ N[0,Np] defined iteratively by S(0) = S0

and
S(j) = V ⊕ �(AS(j − 1)), j ∈ N[1,Np], (26)

where V = �((∆A ∆B)Z), satisfy Condition 1.

Proof 4. The first condition is satisfied by design. Con-
sidering xa, xb ∈ Rnx , v ∈ Rnu , ρa, ρb ∈ Rnρ , as given
in the second condition for some j ∈ N[1,Np], and ∆j =
(Aπ(ρb)xb +B(ρb)v)− (Aπ(ρa)xa +B(ρa)v), we have:

∆j = (Aπ(ρb)−Aπ(ρa))xa +Aπ(ρb)(xb − xa)

+ (Bπ(ρb)−Bπ(ρa))v

∈ (∆A ∆B)Zπ ⊕AS(j − 1)

⊆ V ⊕ �(AS(j − 1)) = S(j).

Therefore, the sets S(j) satisfy Condition 1. �

Remark 7. In the case of qLPV systems with Aπ(ρ) and
B(ρ) affine on ρ, it follows that Aπ(ρ(k+1))−Aπ(ρ(k)) =
Āπ(δρ(k+ 1)) and B(ρ(k+ 1))−B(ρ(k)) = B̄(δρ(k+ 1)),
with Āπ(·) and B̄(·) being linear mappings. Then, the
interval matrices ∆A and ∆B can be computed directly
from δP. In the case of non-affine models, a simple
alternative to convert them into affine by augmenting the
number of scheduling parameters, which may result in
slightly more conservatism.

Remark 8. Bounds on scheduling parameters’ variations
δP can be obtained based on their dependence on the
states ρ(k) = fρ(x(k)). Specifically, this can be done by
placing bounds on δρ = fρ(f(x, u) + Ew) − fρ(x) for
(x, u), (f(x, u)+Ew, u) ∈ Z and w ∈ W, either by interval
arithmetics or optimisation.

Remark 9. Due to the zonotope inclusion and Minkowsky
sum, the number of generators of the zonotopes S(j)
increase by 2nx for each iteration. Methods for complexity
reduction can be used to restrict the number of generators
of each S(j) to a predefined value (Scott et al., 2016).

Remark 10. We stress that the qLPV model in Eq. (2)
requires a linear nominal prediction model, as in Eq. (9),
which changes at each sampling instant k, since it is
based on a frozen prediction for the future scheduling
parameters. Therefore, the propagation of disturbances
along the horizon is crucial, but may yield conservative
sets S(j). This is nonetheless expected, since we are
using a linear time-invariant model to make predictions
on a nonlinear system. Nonlinear predictions can result in
less conservative sets S(j), but also require more online
computational cost, as discussed in Section 2.4.

4. APPLICATION EXAMPLE

For illustration purposes of the proposed method, we
consider a nonlinear model from (Lazar et al., 2008), which
represents a DC-DC Buck-Boost converter system. The
nonlinear dynamics are:

f(x, u) =

(
x1 + α1x2 + (β1 − γ2x2)u
−α2x1 + α3x2 + (β2 + γ1x1)u

)
, (27)

which can be embedded into the qLPV form of Eq. (2)
with:

A(ρ) =

(
1 α1

−α2 α3

)
, B(ρ) =

(
β1 − ρ2

β2 + ρ1

)
, (28)

fρ(x) =

(
γ1 0
0 γ2

)
x , E = Inx . (29)

The states x1 and x2 represent, respectively, the inductor
current and the output tension, while u is a duty-cycle
input signal. The model parameters are: α1 = 0.0541Ω−1,



α2 = 0.1033Ω, α3 = 0.9909, β1 = 2.619A, β2 = 0.2400V ,
γ1 = 0.2273Ω and γ2 = 0.1190Ω−1.

The state and input constraints are: x(k) ∈ X = {x ∈
R2 : ‖x‖∞ ≤ x = 1} and u(k) ∈ U = {u ∈ R : |u| ≤ u =
0.1}. The scheduling parameter constraints are:

ρ ∈ P =
{
ρ ∈ R2 : |ρ1| ≤ γ1xmax, |ρ2| ≤ γ2xmax

}
. (30)

In order to compute the bounds on δρ, one can use either
constrained optimisation or interval arithmetic methods as
described in Remark 8. The tightest bounds were obtained
through constrained optimisation, which gives:

δP :=

{
δρ ∈ R2 :

(
−0.0859
−0.0249

)
≤ δρ ≤

(
0.0805
0.0195

)}
.(31)

The system operates subject to additive load disturbance
bounded to the box w(k) ∈ W :=

{
w ∈ R2 : ‖w‖∞ ≤ 0.02

}
.

The following results are obtained with the aid of Matlab,
yalmip, SDPT3, fmincon and Gurobi.

We apply our proposed zonotopic MPC with stage cost
weights Q = Inx and R = Inu . The chosen prediction
horizon is Np = 4. The parameter-dependent matrices
W (ρ) and Y (ρ), used to compute the terminal cost V (x) =
xTY −1(ρ)x and feedback gain K(ρ) = W (ρ)Y −1(ρ), found
by the bisection LMI solution of Theorem 3 with λ = 0.3,
are:

Y (ρ) = ρ1

[
−0.3014 −0.0304

? −0.2216

]
+ ρ2

[
−1.0018 −0.0559

? −0.8395

]
,

W (ρ) = ρ1 [ 0.1130 0.0221 ] + ρ2 [ 0.3814 0.0661 ] .

For illustration purposes, we compare the performances
obtained with our method against those obtained with
”full-blown” NMPC method with Lipschitz disturbance
propagation (Santos et al., 2019). We note that this NMPC
approach requires the solution of a nonlinear program at
each sampling period, which is numerically much more
costly than the online program of the proposed method,
which benefits from the linear predictions of the qLPV
realisation, as gave Eq. (9).

First and foremost, we show the disturbance propagation
reachable sets S(j),∀j ∈ N[1,Np] with Zonotope distur-
bance propagation. These sets are computed according to
Theorem 4. In Fig. 1, we show the collection of sets S(j)
over the x1 × x2 plane (Condition 1).

-0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04

-0.05

0

0.05

Fig. 1. Zonotopic sets S(j).

Then, considering the same uniformly randomly generated
disturbance vector w[0,30] with unitary seed and entries
inside W, we evaluate the closed-loop performances with
these two robust MPC algorithms, considering the initial
condition x(0) = (0.5 − 0.5)T . In Fig. 2, we show the

state feasibility set X , the obtained closed-loop trajectories
for 20 discrete-time samples, and the terminal set Xf

(parameter-dependent ellipsoid for the proposed method
and polyhedron for the Lipschitz robust MPC, as detailed
in (Santos et al., 2019)). The results were obtained in a
2.4 GHz, 8 GB RAM Macintosh computer. We note both
approaches are able to stabilise the system at the origin,
as well as to ensure input feasibility u ∈ U .

In order to stress the advantages of the proposed method,
we assess the obtained closed-loop trajectories in terms
of performances indexes. In Tab. 1, we provide the RMS
values for each state and for the stage cost `(x, u), along
the whole simulation. With these indexes, we can conclude
that the proposed robust Zonotopic qLPV MPC method
can obtain good performances, with a reasonable increase
of between 13% and 25% on the RMS values compared to
the ”full-blown” NMPC. This performance deterioration
derives from the model-process mismatches by using a
”frozen qLPV scheduling guess”. Anyhow, we must point
out that the average online computational stress (tc in-
dex) with the proposed solution is much smaller than the
NMPC one (less than 2.8 times smaller), since the nominal
predictions are linear at each sampling instant, resulting
in simpler, convex, optimisation problems. This indicates
the flexibility of the proposed method for embedded appli-
cations, as well as its robustness against bounded additive
uncertainties and the inherent model-process mismatches
derived using the frozen qLPV scheduling predictions.

As a final comment, we indicate that the use of scheduling
prediction guesses, as done in (Morato et al., 2020b) would
certainly refine the closed-loop performances, since the
mismatches between the nominal linear prediction and
the real qLPV trajectories would decrease. Moreover, the
uncertainty propagation w.r.t. these mismatches would
also lead to even smaller zonotopes. These predictions
guesses could be formulated by iterating the MPC QP
(González Cisneros and Werner, 2020) or through recur-
sive mechanisms (Morato et al., 2019). We note that using
such scheduling prediction estimates would not compro-
mise the real-time capabilities of the proposed method,
since the model predictions φπ(·) would still be linear
and resulting optimization would still be convex. We also
stress that the case of stochastic disturbances can be
directly treated by the zonotopic inclusions of the proposed
method, similarly to what is done in (Santos et al., 2019).

Table 1. Performance Results

Method RMS{x1} RMS{x2} RMS{`(·)} tc
Lipschitz 0.3358 0.2626 0.3386 50ms

Zonotope 0.3813 0.3253 0.4233 17.5ms

5. CONCLUSIONS

In this paper, we provided a novel MPC algorithm for
nonlinear systems represented through qLPV models. The
method uses a frozen scheduling parameter guess as a
prediction model, and bounds the propagation of model-
process mismatches and additive load disturbances with
zonotopes. We offer LMI-solvable remedies to compute a
stabilising LPV feedback gain and parameter-dependent
terminal conditions, used to ensure recursive feasibility of
the optimisation procedure. The terminal set is a robust
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Fig. 2. Closed-Loop trajectories and terminal set Xf : Zonotope (left) and Lipschitz (right).

positively invariant ellipsoid. We compare our method
against a NMPC with Lipschitz disturbance propagation.
As a result, we find similar performances with smaller com-
putational stress with the proposed scheme, which benefits
from the linear predictions of the qLPV realisation. While
the method is ready for embedded applications (the online
stress is similar to that of a constrained QP), we still plan
on investigating conservatism reduction of the solution as
well as its adaptation for tracking purposes.
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APPENDIX

PROOF OF THEOREM 3

We begin by showing the positive invariance of the ellip-
soid. Applying the S-procedure, with λ > 0 to (17) and(
xTP (ρ)x ≤ 1

)
, we get:

xTATπ (ρ)P (ρ+ δρ)Aπ(ρ)x+ λ
(
1− xTP (ρ)x

)
< 0 ,

which can be rewritten as:

[
xTPT I

] Π︷ ︸︸ ︷[
Π11 Π12

? Π22

] [
Px
I

]
< 0 . (32)

Π11 = Y (ρ)ATπ (ρ)P (ρ+ δρ)Aπ(ρ)Y (ρ)− λY (ρ) , (33)

Π12 = Y ATπ (ρ)P (ρ+ δρ)w† , (34)

Π22 = (w†)TP (ρ+ δρ)w† + (λ− 1) . (35)

Applying a Schur complement over P (ρ+δ) for each entry
of Π leads to (18), as detail Limón et al. (2008). This
ensures Theorem 2.

Complementary, we proceed by demonstrating that the
resulting P (ρ) satisfies all five conditions of Theorem 1.
(C1) trivially holds due to the ellipsoidal form of Xf . (C2)
is verified due to the fact that Xf is a sub-level set of the
terminal cost V (·). Therefore, if condition (C3) is verified,
(C2) is consequently ensured.

The discrete Ricatti condition (C3) is verified through the
solution of LMI (19). Since Q−1 > 0, R−1 > 0 and Y (ρ+
δρ) > 0, we can take W (ρ) = K(ρ)Y (ρ) and apply two
consecutive Schur, complements. This procedures leads to:(

Y (ρ) (A(ρ) +B(ρ)K(ρ))
T
)

(Y (ρ+ δρ))
−1

(A(ρ) +B(ρ)K(ρ))Y (ρ)− Y (ρ) ≤
−Y (ρ)QY (ρ)− Y (ρ)(K(ρ))TRK(ρ)Y (ρ) .

This condition can be pre and post-multiplied by xTP (ρ)
and P (ρ)x, respectively, which leads to:

xT (A(ρ) +B(ρ)K(ρ))
T
P (ρ+ δρ) (A(ρ) +B(ρ)K(ρ))x

−xTP (ρ)x ≤ −xTQx− xT (K(ρ))TRK(ρ)x .

This inequality is a sufficient condition for (C3) with V (·)
as a sub-level of Xf .

The fourth and fifth conditions (C4-C5) are verified by
the direct application of the Schur complement to Eq. (20)
and Eq. (21), respectively, using W (ρ) = K(ρ)Y (ρ). They
lead, respectively, to:(

I{i}K(ρ)
)

(Y (ρ))
(
I{i}K(ρ)

)T ≤ u2
i .

IT{j} (Y (ρ)) I{j} ≤ x2
i .

Since the maximum normed Fx of an x that belongs to
some ellipsoid xTPx ≤ 1 is given by

√
FT (P−1)F , it

holds that the first inequality implies that the projection
I{i}K(ρ)x (i.e. i-th control signal) is upper-bounded, in
norm, by ui, which satisfies (C4). Analogously, the second
inequality ensures that the projection I{j}x (i.e. j-th state)
is norm-bounded by xj , which satisfies condition (C5).
This concludes the proof. �


