A Sharp Discrepancy Bound for Jittered Sampling - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2021

A Sharp Discrepancy Bound for Jittered Sampling

Résumé

For $m, d \in \N$, a jittered sampling point set $P$ having $N = m^d$ points in $[0,1)^d$ is constructed by partitioning the unit cube $[0,1)^d$ into $m^d$ axis-aligned cubes of equal size and then placing one point independently and uniformly at random in each cube. We show that there are constants $c \ge 0$ and $C$ such that for all $d$ and all $m \ge d$ the expected non-normalized star discrepancy of a jittered sampling point set satisfies \[c \,dm^{\frac{d-1}{2}} \sqrt{1 + \log(\tfrac md)} \le \E D^*(P) \le C\, dm^{\frac{d-1}{2}} \sqrt{1 + \log(\tfrac md)}.\] This discrepancy is thus smaller by a factor of $\Theta\big(\sqrt{\frac{1+\log(m/d)}{m/d}}\,\big)$ than the one of a uniformly distributed random point set of $m^d$ points. This result improves both the upper and the lower bound for the discrepancy of jittered sampling given by Pausinger and Steinerberger (Journal of Complexity~(2016)). It also removes the asymptotic requirement that $m$ is sufficiently large compared to $d$.
Fichier principal
Vignette du fichier
jittered_sampling_arxiv_v1.pdf (298.29 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03203695 , version 1 (21-04-2021)
hal-03203695 , version 2 (12-11-2021)
hal-03203695 , version 3 (30-12-2021)

Identifiants

  • HAL Id : hal-03203695 , version 1

Citer

Benjamin Doerr. A Sharp Discrepancy Bound for Jittered Sampling. 2021. ⟨hal-03203695v1⟩
67 Consultations
111 Téléchargements

Partager

More