MULTIGRADED SYLVESTER FORMS, DUALITY AND ELIMINATION MATRICES - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2021

MULTIGRADED SYLVESTER FORMS, DUALITY AND ELIMINATION MATRICES

Résumé

In this paper we study the equations of the elimination ideal associated with n + 1 generic multihomogeneous polynomials defined over a product of projective spaces of dimension n. We first prove a duality property and then make this duality explicit by introducing multigraded Sylvester forms. These results provide a partial generalization of similar properties that are known in the setting of homogeneous polynomial systems defined over a single projective space. As an important consequence, we derive a new family of elimination matrices that can be used for solving zero-dimensional multiprojective polynomial systems by means of linear algebra methods.
Fichier principal
Vignette du fichier
2104.08941.pdf (352.75 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03202525 , version 1 (07-10-2021)
hal-03202525 , version 2 (02-12-2022)

Identifiants

  • HAL Id : hal-03202525 , version 1

Citer

Marc Chardin, Laurent Busé, Navid Nemati. MULTIGRADED SYLVESTER FORMS, DUALITY AND ELIMINATION MATRICES. 2021. ⟨hal-03202525v1⟩
212 Consultations
152 Téléchargements

Partager

More