Parametric Validation of the Reservoir-Computing-Based Machine Learning Algorithm Applied to Lorenz System Reconstructed Dynamics - Archive ouverte HAL
Article Dans Une Revue Complex Systems Année : 2022

Parametric Validation of the Reservoir-Computing-Based Machine Learning Algorithm Applied to Lorenz System Reconstructed Dynamics

Résumé

A detailed parametric analysis is presented, where the recent method based on the Reservoir Computing paradigm, including its statistical robustness, is studied. It is observed that the prediction capabilities of the Reservoir Computing approach strongly depend on the random initialisation of both the input and the reservoir layers. Special emphasis is put on finding the region in the hyperparameter space where the ensemble-averaged training and generalization errors together with their variance are minimized. The statistical analysis presented here is based on the Projection on Proper Elements (PoPe) method [T. Cartier-Michaud et al., Phys. Plasmas 23, 020702 (2016)].
Fichier principal
Vignette du fichier
SMazzi_DZarzoso_RCpaper.pdf (2.91 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03200715 , version 1 (16-04-2021)
hal-03200715 , version 2 (08-02-2022)

Identifiants

  • HAL Id : hal-03200715 , version 1

Citer

Samuele Mazzi, David Zarzoso. Parametric Validation of the Reservoir-Computing-Based Machine Learning Algorithm Applied to Lorenz System Reconstructed Dynamics. Complex Systems , In press. ⟨hal-03200715v1⟩
173 Consultations
167 Téléchargements

Partager

More