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Parametric Validation of the Reservoir-Computing-Based Machine Learning
Algorithm to Predict Chaotic Trajectories

Samuele Mazzia,b and David Zarzosoa
a Aix-Marseille Université, CNRS, PIIM, UMR 7345 Marseille, France

b CEA, IRFM, F-13108 Saint-Paul-lez-Durance, France

A detailed parametric analysis is presented, where the recent method based on the Reservoir Com-
puting paradigm, including its statistical robustness, is studied. It is observed that the prediction
capabilities of the Reservoir Computing approach strongly depend on the random initialisation of
both the input and the reservoir layers. Special emphasis is put on finding the region in the hyper-
parameter space where the ensemble-averaged training and generalization errors together with their
variance are minimized. The statistical analysis presented here is based on the Projection on Proper
Elements (PoPe) method [T. Cartier-Michaud et al., Phys. Plasmas 23, 020702 (2016)].

I. INTRODUCTION

A chaotic system is defined as that for which its time
evolution is extremely sensitive to the initial conditions.
In that sense, given two initial conditions arbitrarily
close, the distance between the respective time evolu-
tion of the system diverges exponentially. The existence
and analysis of chaotic systems is of prime importance,
for chaos is everywhere in our Universe. Chaotic systems
are found in social relations, in financial markets, in the
atmosphere and in the motion of planets, for instance. In-
dependently of the mathematical challenge of analysing
the time evolution of chaotic systems, chaos plays a cru-
cial role worldwide and can lead to catastrophic con-
sequences, for it is theoretically unpredictable. There-
fore, understanding, predicting and eventually control-
ling chaos might open new ways to optimise and amelio-
rate our daily lives. In this paper, we present how chaotic
trajectories can be predicted using Machine Learning
(ML) techniques. For this purpose, we start and base
our study upon a well-known chaotic system: the Lorenz
system [1], which is given by the equations:


ẋ = Fx (x, y, z; a) = a (y − x)

ẏ = Fy (x, y, z; b) = x (b− z)− y
ż = Fz (x, y, z; c) = xy − cz

(1a)

(1b)

(1c)

These equations were derived for the first time by
Lorenz, after simplifying a set of partial differential equa-
tions describing the motion of a fluid in between two lay-
ers of the atmosphere. Therefore, the parameters a, b
and c have a real physical meaning, especially b, which
correspond to the convection rate. Lorenz, in his semi-
nal paper, used the values a = 10, b = 28 and c = 8/3.
It was shown that those values correspond to a chaotic
regime, leading to the famous Lorenz butterfly. Never-
theless, it was later shown that the system can exhibit
different regimes, depending on the parameter b. In this
Letter, we start using this model with the same afore-
mentioned parameters in order to illustrate our results.
We will later analyse the impact of the choice of these
parameters on the prediction of the trajectories. Such a

system was very recently analysed in a couple of publica-
tions [2, 3], where the chaotic trajectories of the Lorenz
system were predicted using the so-called Reservoir Com-
puting (RC) ML approach [4]. Also, the same approach
was employed to infer unmeasured variables in model-
free chaotic systems [5]. The difference between the pre-
diction and the inference methodology comes from the
nature of the input signal. Whereas for prediction the
input signal is nothing else but the signal predicted in
the previous time step and therefore directly related to
the output of the Artificial Intelligence System (AIS), for
inference purposes the input signal is not related to the
output of the AIS, but comes from a given set of mea-
sured variables. In essence, it is intuitive to think that
using an AIS for prediction is less stable than using it for
inference, since the error in the prediction can be ampli-
fied as it is re-introduced in the system in the next time
step.

The AIS method here employed takes inspiration from
the paradigm of the reservoir computers, which were de-
veloped in two independent studies of the early current
century [6, 7]. Due to the difficulty of designing efficient
recurrent neural network (RNN) architectures and the
subsequent inaccuracy of simplistic RNNs [8], Jaeger and
Maass proposed the approach of the reservoir computing,
which differs from the standard RNN in being essentially
split into two levels. The internal layer is composed by
the so-called reservoir, which is a randomly initialised
RNN. Indeed, the output level, usually called readout,
is a feed-forward layer which realizes an optimized out-
put function in order to obtain the predicted vector. In
the case of the RC proposed by Jaeger, the Echo State
Network (ESN) [4, 6, 9], and also in the present study
the output function is a linear regression. Thus, the
weights of the connected nodes of the reservoir are fixed
randomly, whereas the dynamic of the readout layer is
trained and thereby updated at each time step.

In the present study, the large randomness of the RC
approach to the prediction of a chaotic system, such as
the Lorenz system, is described. A statistical analy-
sis, based on the Projection of Proper elements method
[10, 11], is thus carried out to validate and evaluate the
accuracy of the RC method application. The random-
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ness is demonstrated to be related to the random initial-
isation of the reservoir network components, and highly
affected by the chosen configuration parameters. Large
variation of the error in the prediction phase is obtained
for a broad set of parameters of the reservoir, leading
to strong inaccuracy in predicting the time evolution of
the Lorenz chaotic trajectories for a significant sample
of realisations. The results presented in recent contribu-
tions [2, 3] are shown to fall within a narrow region of
the scanned parameter series. Nevertheless, the predic-
tion error of such a narrow favorable region is affected by
large statistical variation as well, making the AIS predic-
tion of chaotic trajectories frequently not reliable.

The remainder of the paper is organized as follows:
the specific RC approach that has been applied on the
Lorenz system [1] and the evaluation techniques, includ-
ing the Projection on Proper elements method [10, 11],
are described in Section II; Section III is subdivided in
five subsections, illustrating the principal results that
are achieved. Different hyper-parameters of the reser-
voir network and of the model are considered and deeply
analyzed, with statistical insight of the probability distri-
bution function of the errors; dedicated analysis on the
time evolution of the Lorenz coefficients is carried out;
the main conclusions are summarized in Section IV.

II. METHODOLOGY

In this paper we produce the database by solving the
Lorenz system given by eq. 1 using a 4th order Runge-
Kutta method (RK4). This integration will produce the
data set {xi, yi, zi}, withN the maximum number of time
steps. We will use ∆t = 0.02 and N = 6250. Such data
set will be divided into a training set and a prediction set,
with respective lengths Ntrain = 5000 and Npred = 1250,
such that N = Ntrain + Npred. The training set will be
used to compute the parameters of the AIS and the pre-
diction set will be used to test the predictive capabilities
of the AIS.

A. Reservoir Computing Setup

Here we follow exactly the methodology employed by
Pathak et al. in Refs. [2, 3] with the same set of param-
eters they used to build the RC. The architecture of the
AIS is shown in figure 1 and will be briefly explained
in the following. The input vector is called u(t) ∈ R3

and contains the three components of the Lorenz system,
x, y and z. It is fed into the reservoir, represented by
a square matrix whose element (i, j) indicates the con-
nection between the neuron i and the neuron j. Such
matrix is called A ∈ RDr×Dr , with Dr the number of
neurons. If the element Ai,j = 0, the neurons i and j
are not connected. Between the input and the reservoir,
one needs an input layer Win ∈ R3×Dr , mathematically
representing an application from R3 to RDr . Both the

reservoir matrix and the input layer are randomly ini-
tialised. The elements of both Win and A are drawn
from a uniform distribution function in [-1,1], with an
additional multiplying scaling factor γscal = 0.1 applied
only to the input layer elements. The elements of the
reservoir are re-scaled so that the largest magnitude of
the eigenvalues (the so-called spectral radius) is equal to
the desired value ρ. In the present study, based on the
example of Refs. [2, 3], the reservoir matrix A is given by
a sparse Erdős-Rènyi network [12, 13], with an average
degree of d = 6. It is to be noted that, since the degree of
the Erdős-Rènyi network is fixed to d = 6, the rewiring
probability p = d/Dr is decreased (increased) when Dr is
increased (decreased) and therefore the connectivity ma-
trix of the neural network becomes sparser (less sparse).
As it will be presented in the following, the number of
reservoir neurons and the spectral radius of the adjacency
matrix are widely scanned and the impact of each cou-
ple of input parameters on the measured errors is then
evaluated. Each neuron of the reservoir is characterised
by a state r (t), which represents the activation of the
neuron (−1: de-activated, +1: activated), computed at
each time step by a tanh activation function:

r(t+ ∆t) = tanh(A · r(t) + Win · u(t)) (2)

The particular choice of using the activate function
of equation 2 is made in order to follow the example
of Refs. [2, 3, 5]. The underlying idea of the reservoir
computing is to predict the dynamic of the system at the
time step n+ 1, i.e. un+1 by means of the relation:

un+1 = Wout · rn + cout (3)

The weights of the readout layer Wout ∈ R3×n can be
subsequently computed by minimizing the difference be-
tween the actual u(t) and the predicted v(t) Lorenz tra-
jectories for each time step of the training phase. There-
fore, in order to train the reservoir computing, one has
to minimize Wout and c ∈ R3 in the following quadratic
form:

||Wout · r + c− v||2 (4)

for all the time step of the training phase, where ||q||2 =
qT · q. Please note that the so-called ”ridge regression
parameter” β = 0, as in the case here studied the over-
fitting was already avoided [2]. Then, this minimization
problem reduces to a linear regression, whose solution in
the training phase is:

W∗
out = (U ·RT ) · (R ·RT )−1 (5)

where U ∈ R3×n is the array containing the actual dy-
namics of the Lorenz system, R ∈ R3×n the array con-
taining the neuron states and W∗

out is the particular solu-
tion of the minimization problem. As a result, the read-
out layer Wout is trained and thereby fixed. Hence, the
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FIG. 1: Schematic representation of the reservoir computing paradigm.

same procedure can be applied in the prediction phase.
Indeed, the neuron states are now computed using the
predicted vector by:

r(t+ ∆t) = tanh(A · r(t) + Win · v(t)) (6)

and subsequently applied as:

vn+1 = Wout · vn (7)

for the entire prediction phase. The vector vn+1 =
[x̃, ỹ, z̃]n+1 contains the components of the Lorenz dy-
namics predicted by the RS approach at the time step
n+ 1.

It is to be noted that the assumption of symmetry in
computing the first two components x→ −x and y → −y
of the Lorenz equations [2, 5] in the predicted vector v is
retained, in order to be consistent with the assumption
made in Refs. [2, 3, 5]. As the considered chaotic sys-
tem could be not predetermined likewise the well-known
Lorenz model, the same analysis has been carried out
relaxing the symmetry hypothesis. Nevertheless, very
similar results are obtained when such an assumption is
relaxed.

Table I summarizes the principal parameters of the
analyzed RC configurations.

B. Error Quantification through the PoPe Method

The AIS predictive capabilities were evaluated in
Refs. [2, 3] based on the ability to predict the climate,

TABLE I: Reservoir parameters that has been used for
the standard simulations, if not otherwise clearly noted.

As explained in the main body of the Letter, the
parameters are: β the ridge regression parameter, γscal
the scaling factor applied to the input layer Win, Dr

the reservoir number of neurons, ρ the spectral radius of
the reservoir network, d the average degree of the

Erdős-Rènyi network, ∆t the time step of the
considered Lorenz dynamics, ntrain and npred the

number of time step in the training and prediction
phase respectively, and δ the period of the moving time

window for the error calculation. Very similar
parameters have been used also in Ref. [2].

Parameter Value
β 0

γscal 0.1
Dr [50, 610]
ρ [0.5, 2.5]
d 6

∆t 0.02
ntrain 5000
npred 1250
δ 1.25

i.e. the ergodic properties of the chaotic system quanti-
fied by the Lyapunov exponents. In the present Letter,
we employed a different criterion, based on the Projection
on Proper elements (PoPe) using the Euclidean distance
as the measure to quantify the error of the system to
reproduce the chaotic behaviour. The PoPe method is
described in detail in Refs. [10, 11] and here we provide
only a brief explanation for our purposes. Let us note
that the Lorenz system can be rewritten as follows
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ẋ = a (y − x) + αx

xz + y + ẏ = bx+ αy

−xy + ż = −cz + αz

(8a)

(8b)

(8c)

It can be observed that this system takes the form of
a linear system

Y = α + m�X (9)

with m = (a, b, c) and � an element-wise multiplication
operator. Let us now assume that we have a set of data
{xi, yi, zi}1≤i≤ntrain

produced by an AIS during the pre-
diction phase and let us assume that we want to deter-
mine to what extent this set of data has been generated
by the Lorenz system given by equation 1. To answer this
question we can determine the parameters m? and α?

which better fit the data and compare them to the ones
that were used for the integration of the Lorenz system,
namely (a, b, c, 0, 0, 0). Such comparison provides the er-
ror εpred between the numerical integration of 1 (what we
call the exact solution) and the prediction made by the
AIS. The error is expressed as

εpred =
√

(a− a?)2 + (b− b?)2 + (c− c?)2 + α?2x + α?2y + α?2z (10)

Note that whereas X is straightforwardly given at any
point of the dataset, the vector Y requires the compu-
tation of the time derivatives, which can be done with
arbitrarily high precision. Note also that another way
to measure the prediction error can be used, where the
distance between the exact and the predicted trajectory
are computed. However, for chaotic time series this is
not a useful quantity, since any small error get ampli-
fied and therefore. This means that even though the
systems are physically close to each other, their time se-
ries can be very disparate. For this reason, we better
quantify the prediction error through Eq. 10. Moreover,
the prediction error is computed based on the coefficients
a?, b?, c?, α?x, α

?
y, α

?
z via a linear regression using 3npred

data points. Therefore, the prediction error may depend
on the length of the prediction phase npred.

In addition to εpred, to quantify to which extent the
prediction error is reliable we calculate the mean squared
error for each coordinate as

MSEχ =
1

Npred
max

Npred
max∑
j=1

(Fχ (x̃j , ỹj , z̃j ;Pχ)− χ̇j)2 (11)

with χ ∈ {x̃, ỹ, z̃} and Px̃ = a?, Pỹ = b? and Pz̃ = c?.
Since the MSE depends on the coordinate to be anal-
ysed, we determine the RMSEmax ≡ maxχ(RMSEχ),

where RMSEχ =
√
MSEχ, since this criterion is more

penalizing.
In this paper, we will quantify the performance of the

RC approach to predict chaotic trajectories through a
scan on the number of neurons Dr and the spectral ra-
dius of the Erdős-Rènyi network. In addition, we will
explore the impact of the length of the prediction phase
on the prediction error 10. As already stated, the RC
approach is based on the fact that all the parameters
of the system are initialised randomly, except those of
the output layer. This implies that the training phase
is reduced to a simple linear regression. But this also

implies that the results may depend on the random ini-
tialisation of the parameters. To overcome this diffi-
culty, for each point in our scan (Dr, ρ), we perform
N = 500 realisations. Each of them will be different,
since the initialisation of the network and of the input
layer is random. For each realisation s we calculate

ε
(s)
pred and RMSE

(s)
max and we use the two ensemble aver-

aged quantities, 〈RMSEmax〉rls = 1
N

∑
sRMSE

(s)
max and

〈εpred〉rls = 1
N

∑
s ε

(s)
pred.

The prediction error and the RMSE can be calcu-
lated in two different ways: (1) for time windows whose
left endpoint is set to 0 and the right endpoint is upper-
bounded by tpred = 25 and increasing for each time win-
dow as κδ, with δ = 1.25 and κ ∈ [1, 2, ..., n] denoting the
number of the time window; (2) for moving time windows
of the same length and whose endpoints are increasing
as [κδ, (κ + 1)δ], with δ = 1.25 and κ ∈ [0, 1, 2, ..., n]. In
other words, in the first way the error is computed over
time windows whose lengths are increasing, considering
therefore the dynamics from tpred = 0 up to κδ; and in
the second way, the error and the RMSE are calculated
over moving time windows of fixed length δ = 1.25. In
the following, we use the first method to compute the
errors. We call this method increasing-time-window pro-
cedure. In this way the dynamics of the entire considered
prediction phase is taken into account in calculating the
deviation from the actual Lorenz trajectories. Nonethe-
less, it could be useful to compare these results with
the moving average error, i.e. the second procedure de-
scribed here above, as it is done for instance in section
III C. The choice of the time window length of δ = 1.25
yields a sufficient number of points to calculate the lin-
ear regression and the subsequent predicted coefficients
(a?, b?, c?, α?x, α

?
y, α

?
z) in each time window of the mov-

ing error procedure. However, if not otherwise noted,
the standard procedure for computing the errors and the
RMSE is the increasing-time-window procedure.
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(a) (b)

FIG. 2: A scan of the error 10, in logarithmic scale, over the input parameters Dr and ρ of the reservoir network is
displayed for the training and the prediction phase, in panel (a) and (b) respectively. The errors are averaged over
the whole set of realisations (N = 500) for each couple (Dr, ρ). Highlighted with red markers are the configuration

employed in Ref. [2].

Finally, it is also instructive to quantify the training
error εtrain, which is computed using the same Euclidean
distance as in equation 10, but applied only to the train-
ing phase.

III. RESULTS

The training and prediction errors averaged over all
the realisations are plotted in figures 2(a) and (b), re-
spectively, fixing the length of the prediction phase to
tpred = 25, i.e. npred = 1250. The isocontours of the av-
eraged training and prediction errors are represented in
logarithmic scale as a function of the number of neurons
Dr and the spectral radius ρ of the reservoir network.
The error in the prediction phase is calculated for the
entire prediction time, i.e. tpred = [0, 25]. It is observed
that the training error is minimum in a rather narrow
region in the (Dr, ρ) plane. Moreover, mild variations of
(Dr, ρ) may lead to an abrupt increase of the training
error. This means that there is a strong restriction in
the allowed values of Dr and ρ. It is particularly im-
portant to realise that increasing the number of neurons
does not necessarily reduce the averaged training error.
Moreover, we can observe that the averaged prediction
error is significant, increased by several orders of mag-
nitude with respect to the training error. The values
selected in [2] were Dr = 300 and ρ ∈ {1.2, 1.45}, which
fall into the beneficial narrow region where the training
error is minimal, as the markers in figure 2(a) show. Yet,
it is observed that the averaged prediction error is far
from being negligible, considering the entire prediction

phase tpred = 25. Within the set of scanned parame-
ters in figure 2, a region where 〈εpred〉rls is minimized is
noted for Dr > 400 and ρ > 1.5. In the remainder of
the paper, such a region, and the configuration included
therein, will be called favorable. Indeed, the region where
Dr > 300 and ρ < 1.2 presents the largest measured av-
eraged errors of the analyzed range of parameters in the
prediction phase. For this reason, it will be termed as
the unfavorable region of the (Dr, ρ) plane.

A. Large Statistical Variation of the Errors due to
Random Initialisation

It is also observed that the averaged errors in both
training and prediction phases for each couple (Dr, ρ)
may be accompanied by a large variation within the set
of performed realisations. In figure 3, the standard devi-
ation σ of the averaged errors within the set of N = 500
realisations is plotted as a function of the number of neu-
rons Dr and the spectral radius ρ for the training and the
prediction phases in (a) and (b), respectively. The set of
realisations is the same displayed in figure 2, and the
errors shown in panel (b) for the prediction phase are
calculated for tpred = [0, 25], consistently with figure 2.
The large dispersion that can be appreciated by measur-
ing σ demonstrates the strong impact of the randomness
on the prediction of Lorenz chaotic trajectories by the
RC technique. The plot in figure 3(a) provides addi-
tional evidence that the possible efficient configurations
of this AIS based on the RC approach for the prediction
of chaotic trajectories are limited to a narrow region in
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the (Dr, ρ) plane. Furthermore, similarly to what has
been observed in figure 2, the difference of the standard
deviation for the set of realisations between the training
phase and the prediction phase is significant, especially
in the favorable region of the scan. Indeed, this proves
the more frequent occurrence of large error events in the
prediction phase, which are then responsible also for the
increase of the averaged prediction error within the set
of the realisations with respect to the training phase.

Insightful information on the randomness of the RC
prediction can be found by further analysing the two
specific study-cases described in Ref. [2]. From the
statistically-relevant averaged results illustrated in figure
2, one can infer that the case with (Dr, ρ) = (300, 1.45)
performs better than the case with (Dr, ρ) = (300, 1.2)
(respectively, red diamond and red star in figure 2), as
the 〈εpred〉rls is minor for the former than for the lat-
ter case. This result might not be in full agreement
with what is reported in Ref. [2], where the case with
(Dr, ρ) = (300, 1.45) is shown to be less performing to
predict chaotic trajectories, with respect to the case with
(Dr, ρ) = (300, 1.2). This might be due to the ran-
dom initialization of the input layer and the reservoir
array. Indeed, for one single realization, the case with
(Dr, ρ) = (300, 1.2) can perform better than that with
(Dr, ρ) = (300, 1.45), consistently with Ref. [2]. This is
illustrated in figure 4, where the time traces of x, y and
z are plotted for Dr = 300 and the two values ρ = 1.2
(left panel) and ρ = 1.45 (right panel). In each panel, the
realisation with minimum error is plotted by a red curve.
Another randomly chosen realization is plotted by the
blue curve. As a reference, the exact solution is given by
the dashed black curve. It is observed that depending on
the realization, the case ρ = 1.2 can perform better or
worse than the case ρ = 1.45.

B. Statistical Analysis on the Error Distribution

Given the large statistical variation exhibited by the
measured errors, we analyse the relevance of using the
mean value as an indicator of the error for each sin-
gle (Dr, ρ) configuration within the set of realisations.
The histograms of log10(εpred) for four couples (Dr, ρ)
configurations are shown in figure 5. The same analysis
on the error in the training phase log10(εtrain) revealed
analogous results. These four different cases are chosen
to represent: (a) a favorable case, (b) and (c) the same
cases studied by Pathak et al. in Ref. [2] and (d) a case
in the unfavorable region of the (Dr, ρ) plane. In this
particular analysis, the number of realisations has been
increased up to N = 5000 to improve the statistical rele-
vance of the data set, and the histograms are captured in
nbins = 100 bins evenly spaced. As can be seen, the his-
tograms are shifted to large error values going from panel
(a) to panel (d). In the four panels, the Gaussian proba-
bility density function (PDF), whose mean and standard
deviation are respectively equal to the statistical mean

and standard deviation of the corresponding set of real-
isations, is over-plotted with black dashed lines. In this
way, it is straightforward to compare the histograms and
the Gaussian PDFs. Whereas for panels (b) and (c) the
distribution of the error over the set of realisations fol-
lows a Gaussian, for panels (a) and (d) the histograms
exhibit a departure from the normal PDF. In particular
for the configuration (Dr, ρ) = (550, 0.9), an inset with
the rightmost tail of the distribution function is displayed
in a log-log plot. In this way, it is possible to appreciate
the deviation for the large-error events of such configura-
tion from the tail of the Gaussian distribution. This de-
viation is present in all the analyzed configurations of the
unfavorable region of the (Dr, ρ) plane. Therefore, it is
demonstrated the accuracy of using the statistical mean,
i.e. the first moment of the distribution function, to quan-
tify the error in both training and prediction phases for
a significant range of analyzed configurations. Yet, the
unfavorable region of the (Dr, ρ) plane presents a non-
negligible deviation from the Gaussian distribution, es-
pecially concerning the large error events.

Additionally, it could be observed that the slight devia-
tion of the histograms from the normal distribution func-
tion, especially in panel (d), can be explained by studying
the third and fourth standardized moments of the PDF,
i.e. the skewness µ3 and the kurtosis µ4 respectively. The
skewness measures the loss of asymmetry of a distribu-
tion function. For a symmetric PDF the skewness is null
(µ3 = 0), hence a positive (negative) value indicates that
the data-set is skewed to the right (left) with respect
to the principal mode - the mean value for a unimodal
Gaussian PDF. On the other hand, the kurtosis property
measures the flatness of the PDF. Generally, the kurtosis
is compared to the kurtosis of a Gaussian distribution
function, which is equal to 3 (µ4 = 3). Therefore, it is
commonly used the excess kurtosis µ̃4, which is the kur-
tosis re-scaled to 3 (µ̃4 = µ4−3). A large excess kurtosis
thus indicates that the distribution has strongly popu-
lated tails. Therefore, by inspecting the loss of asymme-
try (skewness) and strength of the tails (excess kurtosis)
together, it is possible to evaluate the behaviour of the
measured PDFs. The measured distribution function in
figure 5(a) and (d) reveal a positive skewness, denoting
a major broadening towards large error values, as can be
also inferred from the plots. Whereas for the configu-
ration (Dr, ρ) = (470, 2.2) the skewness is mildly above
zero, the RC with (Dr, ρ) = (550, 0.9) shows a four-time
larger value of the skewness, which evidences the more
frequent occurring of large error events. For this lat-
ter configuration the re-scaled fourth moment, the ex-
cess kurtosis, is positive and large indicating that the
distribution of the data-set is strongly peaked around
the mean value. In conclusion, the statistical properties
of the cases in panels (a), (b) and (c) indicate that the
distribution functions could be well approximated with
a Gaussian around the corresponding mean values. On
the other hand, for the unfavorable case in panel (d),
the statistical mean value is strongly affected by a more
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(a) (b)

FIG. 3: The standard deviation σ of the logarithm in base 10 of the errors, for both training (a) and prediction (b)
phases, within the set of N = 500 realisations is displayed for the same scans reported in figure 2. The large

variation within the whole set of realisations can be thus appreciated.

frequent occurring of large-error events.

C. Dependence of the Error on the Prediction
Phase Length

To shed some light on the validity of the RC to predict
chaotic trajectories, we additionally explore the depen-
dence of the prediction error on the maximum length of
the prediction phase. As illustrated in Ref. [2], the AIS
based on the RC approach correctly predicts the short-
term trajectories, while significantly deviating from the
actual Lorenz trajectories in the long-term phase. The
considered length of the prediction phase has thereby a
strong impact on the computed error. Therefore, we
analyse the dependence of the averaged prediction er-
ror and maxχ(RMSEχ) on the length of the prediction
phase in the two different procedures that have been de-
scribed at the end of section II B. The results are illus-
trated in figure 6. Hence, in panels (a)-(c) the prediction
error and the RMSE are calculated for time windows
whose period is [0, κδ], with δ = 1.25 and κ = [1, 2, ..., n],
up to tpred = 25. Indeed, panels (d)-(f) represent the
prediction error and the RMSE calculated in the sec-
ond fashion, for which the period of the time windows is
[κδ, (κ + 1)δ], with δ = 1.25 and κ = [0, 1, 2, ..., n]. The
two procedures are labelled in the figure as increasing-
time-window average error and moving average error, re-
spectively.

As it has already been noted, even for the favor-
able cases in panel 6(a) in previous sections, both
〈log10(εpred)〉rls and 〈log10(RMSEmax)〉rls indicators are
very large compared to the error in the corresponding

training phase. It is also observed that there is a strong
dependence on the length of the prediction phase in the
short-term prediction. Focusing on the increasing-time-
window average procedure, after the prompt increase in
the short-term prediction, the error remains constant (af-
ter an elbow) in the long-term prediction, consistently
with Ref. [2]. Such a behaviour is actually present for
the favorable configurations also when the error is calcu-
lated with the moving average procedure, as panels (d)
and (e) show.

Furthermore, smoother curves in the time evolution
of the calculated error appear when the increasing-time-
window average procedure is employed. This is to be un-
derstood as, in this latter procedure, the calculation has
a kind of ’memory’ from previous time windows, since the
analyzed time period increases by including also the dy-
namics of the previous time windows. On the other hand,
there is no such ’memory effect’ in the moving average
procedure, as the solution coefficients are calculated for
each time window independently from the previous ones.

Another striking observation comes from the value of
the error at the end of the first time period of the pre-
diction phase (tpred ∈ [0, 1.25]). Indeed, the average pre-
diction error 〈εpred〉rls already presents value much larger
than the error evaluated for training phase for the same
configuration. The difference between these two values
can also be inferred from the plots in figure 2. Especially
for the favorable configurations, the difference could be
also more than 4 orders of magnitude. Therefore, the RC
approach could show a strong disparity from the expected
dynamics also for tpred < 2.5, i.e. for only 3 ∼ 4 oscil-
lations of the Lorenz system. This could essentially be
due to two reasons: either the reservoir layers are failed
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(a) (b)

FIG. 4: The dynamics of the three components of the Lorenz system, predicted by the RC, is shown for the two
configurations studied in Ref. [2], i.e. (Dr, ρ) = (300, 1.2) (a) and (Dr, ρ) = (300, 1.45) (b). The blue dashed curves

are the actual chaotic trajectories obtained through numerical integration of the Lorenz equations with RK4
method. Red and green curves show respectively the best and a non-favorable solution obtained through RC

technique over the whole set of N = 500 realisations.

to be trained and the error is thereby propagated in the
prediction phase inevitably, or the RC technique predicts
strongly different dynamics in the short-term phase. The
former condition, for which the training phase already
produces a large error and thus the reservoir layers are
not well-trained, is less frequent, as the lower mean val-
ues of the error in figure 2(a) and the standard devi-

ations in figure 3(a) illustrate. Nevertheless, if a large
error event occur in the training phase, this inevitably
produces a large error event also in the prediction phase,
since the RC is ill-trained and so unable to recover the
correct Lorenz dynamics. The latter condition, for which
the RC network is well-trained but fails in predicting the
short-term dynamics, is indeed the most frequent. As a
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(a) (b)

(c) (d)

FIG. 5: The error in logarithmic scale in the prediction phase, calculated at tpred = 25, of an incremented set of
N = 5000 realisations is shown in histogram plots for four different RC configurations. The distribution is binned in
nbins = 100 samples. The black dashed curves represent the unimodal normal PDF, whose mean value and standard

deviation are the mean value and the standard deviation of the error distribution functions for the corresponding
configuration.

result, the average error in the first time window of the
prediction phase is much higher than the one measured
in the training phase.

D. Dependence of the Error on the Train Phase
Length

It is now considered the effect of the length of the train-
ing phase on the error in predicting the Lorenz trajecto-
ries by means of the RC technique. In figure 7, the de-
pendence of both 〈εtrain〉rls and 〈εpred〉rls on the length of
the training phase is displayed for various chosen reser-

voir configurations. The plots illustrate the result for
ntrain > 1000, as for smaller number of time steps the
RC definitely fails in being trained and subsequently in
predicting the chaotic dynamic of the system. The pa-
rameters of the various configurations are the same an-
alyzed in panels (a) and (b) (and also (d) and (e)) of
figure 6. The error in the prediction phase is considered
for the entire prediction phase tpred = [0, 25]. A striking
observation about the training phase for the configura-
tions with (Dr, ρ) = (430, 2.3) and (Dr, ρ) = (470, 2.2) is
the non-monotonic behaviour of the function. Indeed, for
a narrow range of the training phase length, the 〈εtrain〉rls
curves presents a minimum. Such a behaviour has been
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FIG. 6: The error in the prediction phase is displayed as a function of the length of the prediction phase for different
configurations. The error and RMSE are calculated at increasing width of the time windows in panels (a)-(c),

whereas with moving time window of fixed period δ = 1.25 in panels (d)-(f). The configurations reported are picked
from the whole scanned cases, with the purpose of representing: (a) and (d) favorable cases, (b) and (e) the same

cases reported in Ref. [2] and eventually (c) and (f) cases from the unfavorable region of the (Dr, ρ) plane explored
in figure 2.

found also in other configurations within the favorable
region of the (Dr, ρ) plane. Instead, for the configu-
ration setups with (Dr, ρ) = (300, 1.2) and (Dr, ρ) =
(300, 1.45), the same analyzed by Pathak et al. in [2],
the error in the training phase is basically decreasing
with the increasing number of considered time steps for
training the system until a plateau is reached. This
plateau could be expected due to the quasi-periodicity
of the chaotic oscillations of the Lorenz system. Regard-
ing the prediction phase, the behaviours of all the de-
tailed configurations resemble. After a sharp decrease
for ntrain > 1000, the curves mildly continue to decrease
until ntrain = 4000 ∼ 5000, where they become averagely
constant. Therefore, the increase of the number of time
steps in the training phase beyond ntrain = 10000 leads
to enhanced elapse time and complexity of the system,
without improving the prediction of the chaotic trajec-

tories significantly. Furthermore, it is to be noted the
jagged behaviour of 〈εpred〉rls in function of the number
of time steps ntrain. Consecutive points of this particular
scan could lead to very different results. Thus, increasing
ntrain does not automatically lead to an improvement of
the results, but it could be indeed detrimental in average.

E. Studies on the Time Evolution of the Predicted
Lorenz Coefficients

Additional analyses have been carried out on the
evolution in time of the coefficients (ã, b̃, c̃, α̃x, α̃y, α̃z)
which better fit the prediction obtained by means of
the RC technique. In the Lorenz system, such coeffi-
cients are constant throughout the whole time trajectory.
This assumption, together with the constraint of having
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FIG. 7: The errors in the training (a) and in the prediction phase (b) are shown as a function of the length of the
training phase for four different input configurations of the reservoir network. The configurations are the same

analyzed also in figures 5 and 6. The abscissas is expressed both in length of the training phase in normalized time
ttrain and in number of timesteps ntrain in the training phase.

(α̃x, α̃y, α̃z) = (0, 0, 0), is crucial for the validity of the
Lorenz system. Therefore, in order to ensure the relia-
bility of the predicted dynamics of the chaotic system,
the fitted coefficients have been plotted for two different
RC configurations, which minimizes the prediction error
at the end of the prediction phase εpred(tpred = [0, 25]),
in figure 8. These two configurations are the same an-
alyzed by Pathak et al. in [2], i.e. (Dr, ρ) = (300, 1.2)
and (Dr, ρ) = (300, 1.45). As it has already been ex-

plained, (ã, b̃, c̃, α̃x, α̃y, α̃z) are the coefficients which bet-
ter fit the Lorenz equations for the RC predicted dy-
namics in the prediction phase. In this particular anal-
ysis, the coefficients are calculated for consecutive mov-
ing time windows of the prediction phase with a period
of δ = 1.25. The same procedure has already been de-
scribed in section III C when the calculation of moving
error has been applied to produce the figures 6(d)-(f).
We repeat that this choice of δ = 1.25 enables to have
sufficient elements in each time window for the calcu-

lation of such predicted coefficients by linear regression
techniques and to grasp, thereby, their time dependence
in the prediction phase. Thus, in the first two columns
of figure 8, the coefficients of the solution are plotted
against the time of the prediction phase tpred, while in
the rightmost column the actual Lorenz dynamics are
compared to each component of the AIS predicted sys-
tems. However, it is observed that in this optimized
case the setup with (Dr, ρ) = (300, 1.45) performs bet-
ter than (Dr, ρ) = (300, 1.2), consistently with what is
displayed in figures 6(b) and 6(b) and (e). Indeed, the
three predicted coefficients for (Dr, ρ) = (300, 1.45) oscil-
lates around the actual initial Lorenz coefficients (a, b, c)
(highlighted in black horizontal dashed lines in the pan-
els of the first column) throughout the whole prediction
phase. The deviations from the exact coefficients of the
studied Lorenz system appear almost negligible (±5%).
Regarding indeed the case with (Dr, ρ) = (300, 1.2), a
significant deviation is noted in the time window around
tpred = 11. Nevertheless, this deviation does not impair
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FIG. 8: The coefficients (ã, b̃, c̃, α̃x, α̃y, α̃z) corresponding to the best solution of the RC application for the
configurations also explored in Ref. [2] are shown in the first two columns. The horizontal dashed lines represent the
values of the relative coefficients in the actual Lorenz system. In the third column, the predicted dynamics of these

two configurations are compared to the actual Lorenz dynamics (labeled ’Ground truth’).

the whole prediction phase, as the actual coefficients are
promptly recovered after the deviation occurring. If the
third column of figure 8 is inspected for the configura-
tion (Dr, ρ) = (300, 1.2) (blue curves), it is possible to
see that around tpred = 11 there is a pattern loss, which
determines the high spike in the calculation of the pre-
dicted coefficients. Yet, such an instantaneous deviation
from the exact Lorenz trajectory does not prejudice the
overall dynamical properties of the predicted system.

However, as it has already been noted, the solution
plotted in figure 8 are the predictions that minimizes
εpred(tpred = 25) within a statistically relevant set of
N = 5000 realisations for each RC configuration. There-
fore, the reader must be cautious on evaluating it, since in
the same sample of realisations cases with large measured
errors were frequently observed, as the average prediction
error in figure 2 and the PDF of the prediction error in
figure 5 demonstrate. The optimized cases reported in
this section, indeed, are located in the tail of the cor-
responding PDF, and therefore the probability of their
occurrence is quite low.

A more detailed analysis on the α coefficients is per-

formed and the results are illustrated in figure 9. Here,
the PDF of the α coefficients (α̃x, α̃y, α̃z) for the config-
uration with (Dr, ρ) = (300, 1.45) is plotted for three dif-
ferent time windows in the prediction phase, i.e. tpred =
([0, 1.25], [11, 12.5], [23.5, 25]). The PDFs are binned in
nbins = 500. The same analysis has been carried out
also for other configurations in the favorable region of
the (Dr, ρ) plane, yielding similar results. What can be
inferred here is that the distribution functions of the α̃
coefficients are centered around zero, strongly broadening
with increasing time in the prediction phase. Measuring
the width of the PDFs, one can notice that it is signifi-
cantly enhanced going from tpred = 1.25 to tpred = 12.5
for all the three coefficients, whereas no such a differ-
ence is measured from tpred = 12.5 to tpred = 25. To
corroborate this result, the standard deviation σ of the
α̃ coefficients within the set of N = 5000 realisations is
plotted in logarithmic scale against tpred. The green ver-
tical dashed lines represent the upper boundary of the
analyzed time windows. It is observed that already after
the first time window, σ increases of more than two orders
of magnitude. Then, it reaches a quasi-stationary phase
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FIG. 9: The probability distribution function of the coefficients (α̃x, α̃y, α̃z) for the RC configuration with
(Dr, ρ) = (300, 1.45) is shown in histograms for three different time windows of an incremented set of N = 5000
realisations. The distribution is binned in nbins = 500 samples. The standard deviation of the PDFs is shown in

figure 10 for the entire prediction phase.

FIG. 10: The evolution in time of the standard deviation σ of the α coefficient PDFs diplayed in figure 9 is shown in
logarithmic scale for the prediction phase up to tpred = 25. The green dashed vertical lines represent the time

windows displayed in figure 9.

with jagged behaviours. Therefore, as already proved by figure 9, the frequency of of large value events occur-
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ring is higher already after the first time window, but
it does not increase additionally in the rest of the pre-
diction phase. However, the standard deviation presents
some spikes (especially for α̃y and α̃x), which are symp-
tomatic of a more frequent occurring of the large value
events. These large value events, indeed, are correlated
with the large error events in the prediction phase, as the
relation 10 proves. To conclude, the analysis here per-
formed shows that in the predicted Lorenz system the
α̃ coefficients, measured by the PoPe method, are cen-
tered around zero. However, quite frequently they differ
from the null value, indicating that the actual Lorenz
dynamics is definitely impaired. Moreover, the solutions
displayed in figure 8 are only representative of the tail
of the probability distribution, as the frequency of their
occurrence is very low. Hence, even for favorable config-
urations, the accuracy of such a RC approach must be
evaluated cautiously.

IV. DISCUSSION

In this Letter, we have analyzed the validity of the
reservoir computing ML technique to predict the trajec-
tories of the Lorenz system, a well-known chaotic system,
by the Projection on Proper elements method. Such a
method is briefly explained in section II (more details
can be found in Refs. [10, 11]). The validity of the RC
technique is statistically measured by running N = 500
realisations for a large set of configuration parameters.
Thus, it has been shown that a good accuracy is achieved
only for a small range of (Dr, ρ) configurations of the
reservoir. Yet, the error in the prediction phase is signif-
icantly increased with respect to the error in the train-
ing phase, with a significantly large variation of the er-
ror, as figure 3 shows. This implies that quite frequently
the RC approach produces predictions strongly affected
by large errors of the Lorenz system. It is shown that
this is essentially due to the intrinsic randomness of the

RC technique, which inevitably leads to have large error
events frequently also for the favorable configurations of
the network. Additional scans on the relevant parameters
of the ML technique such as the length of both training
and prediction phases are carried out, showing that the
range of validity of this RC approach is even further nar-
rowed. Indeed, a minimum number of time steps in the
training phase is required to achieve acceptable results,
as figure 7 illustrates, but only for predicting the short-
term dynamics of the Lorenz system. The deviation from
the exact Lorenz dynamics in the long-term prediction
phase is shown to become very large. Such results are
also analyzed deeper by means of detailed studies on the
time evolution of the Lorenz coefficients computed by the
AIS, to determine the validity of the RC approach in this
explicit application to the prediction of Lorenz chaotic
trajectories. It is shown that the large variation of the
Lorenz coefficients computed from the predicted solution
can be significant. Therefore, the solution predicted by
the AIS based on the RC approach is not necessarily rep-
resentative of a Lorenz system.

This paper, in the context of the RC approach to the
prediction of of chaotic time series, is helpful to establish
the range of validity of this AIS technique. It also sug-
gests that further developments of the RC paradigm are
required in order to robustly achieve a good accuracy in
predicting chaotic time series.
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