AUCCCR: Agent Utility Centered Clustering for Cooperation Recommendation - Archive ouverte HAL
Communication Dans Un Congrès Année : 2021

AUCCCR: Agent Utility Centered Clustering for Cooperation Recommendation

Résumé

Providing recommendation to agents (e.g. people or organizations) regarding whom they should collaborate with in order to reach some objective is a recurring problem in a wide range of domains. It can be useful for instance in the context of collaborative machine learning, grouped purchases, and group holidays. This problem has been modeled by hedonic games, but this generic formulation cannot easily be used to provide efficient algorithmic solutions. In this work, we define a class of hedonist games that allows us to provide an algorithmic solution to the collaboration recommendation problem by means of a clustering algorithm. We evaluate our algorithm, theoretically and experimentally and show that it performs better than other clustering algorithms in this context.
Fichier principal
Vignette du fichier
article.pdf (1.43 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03181696 , version 1 (25-03-2021)

Identifiants

Citer

Amaury Bouchra Pilet, Davide Frey, François Taïani. AUCCCR: Agent Utility Centered Clustering for Cooperation Recommendation. NETYS 2021 - 9th International Conference on NETworked sYStems, May 2021, Marrakech, Morocco. ⟨10.1007/978-3-030-91014-3_8⟩. ⟨hal-03181696⟩
300 Consultations
81 Téléchargements

Altmetric

Partager

More