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Abstract

Providing recommendation to agents (e.g. people or organizations) regarding whom they should

collaborate with in order to reach some objective is a recurring problem in a wide range of domains.

It can be useful for instance in the context of collaborative machine learning, grouped purchases,

and group holidays. This problem has been modeled by hedonic games, but this generic formulation

cannot easily be used to provide efficient algorithmic solutions. In this work, we define a class of

hedonist games that allows us to provide an algorithmic solution to the collaboration recommen-

dation problem by means of a clustering algorithm. We evaluate our algorithm, theoretically and

experimentally and show that it performs better than other clustering algorithms in this context.

I Introduction

In this work, we aim to provide an algorithmic solution for people or organizations who wish

to collaborate towards some task (buying, machine-learning...) but do not want to cooperate with

members whose individual objectives are too different from their own. This problem can be modeled

as a set of rational agents that may or may not form coalitions depending on the utility they might

derive from such coalitions, a formalism based on economics and prescriptive decision theory [vM44].

While descriptive decision theory has shifter to the more exact Prospect theory[KT79], this work is

about automated decision support and, thus, based on expected utility[Ran+07]. The utility an agent

obtains from belonging to a group is positively correlated to the group’s size (larger is better), but

negatively correlated with its distance from the group’s barycenter (closer is better). Such a model

can capture various practical problems: in collaborative machine learning, for instance, learners with

similar but different tasks may or may not collaborate with each other, depending on the effect of

this collaboration on the efficiency of their learning process; in grouped purchases, potential buyers

will search for other people with similar buying habits to save money by placing grouped orders, but

will not benefit if the products bought deviates too much from their preferred options; when planing

organized vacations, most people want to save money with group rates, but not at the cost of visiting

too many places they are not interested in. We also consider the case where people want to be in large

enough groups but not too large.

An algorithm that solves this problem should provide collaboration recommendations (e.g. with

whom each agent should perform a grouped order) that agents find acceptable and from which they do

not deviate. Since, in this context, the relative utility of different options for an agent depends on the

choices of other agents, it is crucial to prevent situations where a few agents reject the recommendation,

as this could lead to a complete collapse of the solution. The departure of a dissatisfied agent can

decrease the group’s value for other agents, which may in turn leave the group, etc.

1/33



Agent Utility Centered Clustering for Cooperation Recommendation Amaury Bouchra Pilet et al.

In economic terms, this problem can be modeled as a hedonic game [DG80], but this formalization

tends unfortunately to be too general to allow for effective algorithmic solutions. Existing algorithms

that solve generic hedonic games, summarized in [AS16], need to constrain them by requiring the

existence of some kind of equilibrium (Nash equilibrium or a similar definition), which is not guaranteed

by the generic definition of hedonic games and may not exist in practice. In our work, we instead

consider a more restricted class of games, and we provide a solution that also works in cases where no

kind of equilibrium exists.

Hedonic games designed for specific problems have been proposed in the past, for example in

[Saa+10], but the practical problems they consider do not apply to our context. In particular, these

works tend to adopt a formalization that ensures the existence of some kind of equilibrium, while we

want solutions for cases where no equilibrium exists.

Our insight is that the hedonic games corresponding to our coalition-formation problem can be

interpreted as a clustering problem. We want to identify groups of close and numerous agents, which

is essentially a clustering task. However, commonly used clustering algorithms, while technically

applicable, are not adapted to this particular task. To address this gap, this paper proposes a novel

clustering algorithm, that is specifically designed to address the task we want to solve.

We begin this paper with a formal definition of the class of hedonic games we use to model

collaboration. We then propose AUCCCR (pronounced “okr”, IPA: [okʁ]), a clustering algorithm able

to provide solutions to the considered problem. We present a theoretical and experimental evaluation

of our algorithm on both synthetic and real data. From this evaluation, we conclude that our algorithm

respects individual agents interests better than other clustering algorithms.

II Our approach

II.1 Problem statement and formalization

We consider a set of agents 𝑎0, ..., 𝑎𝑚 ∈ 𝐴 that seek to form groups so that every agent in a

group effectively benefits from belonging to this group. We represent agents’ preferences using an

ℓ-dimensional real vector given by a projector function, 𝑝 ∶ 𝐴 → ℝℓ, which allows us to measure

similarity between agents as a distance. In our model, the benefit from being in a group depends on

two factors: the size of the group (the larger the better), and the similarity between an agent and the

(average of) the group (the more similar the better).

More concretely, we define a utility function 𝑈𝑝(𝑎, 𝑔) that expresses the interest of an agent, 𝑎, in
a group, 𝑔, using a projector, 𝑝, as the product of two factors: (i) the value of the group (function
𝑣), which grows with the group’s size; and (ii) a decreasing function (𝑛(...)) of the distance between
an agent and the group’s barycenter (as measured by a distance function 𝑑(...)). This is formally
captured by the following formula:

𝑈𝑝(𝑎, 𝑔) ∶ 𝐴 × 𝒫(𝐴) → ℝ+ = 𝑛(𝑑(𝑝(𝑎), 𝑏𝑎𝑟𝑦𝑝(𝑔))) × 𝑣(#𝑔),

where 𝒫(𝐴) is the power set of 𝐴, #𝑔 is the size of group 𝑔, bary𝑝(𝑔) is the barycenter of group
𝑔 with projector 𝑝, and the functions 𝑑, 𝑣, and 𝑛 are defined as follows: 𝑑(𝑥, 𝑦) ∶ ℝ𝑘 × ℝ𝑘 → ℝ is the
distance between 𝑥 and 𝑦; 𝑣(𝑛) ∶ ℕ → [1, +∞[ is the value of a group of size 𝑛 (increasing, 𝑣(1) = 1);
and 𝑛(𝑑) ∶ ℝ+ → [0, 1] is the normalizer for an agent at distance 𝑑 from its group’s barycenter

(decreasing, 𝑛(0) = 1). In the following we will also use 𝑔(𝑎) to denote the group of agent 𝑎. These
definitions associate a utility value of 1 with an agent that remains alone (since the interest of joining
a group with a barycenter at distance 0 and consisting of 1 element (itself) is 𝑛(0) × 𝑣(1) = 1 × 1).
Given 𝐴, 𝑝(), 𝑑(), 𝑛() and 𝑣(), the group formation problem we seek to solve consists in finding

a partition of 𝐴 (representing the groups), that maximizes the sum of every agent’s utility, while

minimizing (or even eliminating) the benefit individual agents could gain by either changing group or
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Ident Description

rand(𝐴) Random (uniform) element of 𝐴
rand(𝐴, 𝑑) Random element of 𝐴 with distribution 𝑑
𝑑(𝑥, 𝑦) distance between 𝑥 and 𝑦
bary(𝑔) barycenter of group 𝑔
𝑝(𝑎) projector function

𝐴 set of agents

𝑘 number of clusters

dmin2 k-means++ distribution

grp groups

ngrp new groups (in building)

size groups’ sizes

nsize new groups’ sizes (in building)

bgrp estimated best groups for each agent (inner loop)

val affectation’s value (sum of utilities)

nval new affectation’s (just built) value (sum of utilities)

Table 1: Symbols used in algorithm

remaining alone (to ensure the solution’s stability). Table 1 summarizes these notations and defines

the variables and parameters appearing in algorithms.

II.2 Algorithm

In this section, we present our algorithm’s and define them precisely.

In the following algorithms, the member function ∗.𝑖𝑛𝑣𝑒𝑟𝑡𝑘𝑣() inverts keys and values of an asso-
ciative container (data structure), the member function ∗.𝑔𝑟𝑜𝑢𝑝(𝑥) returns the set of all elements in
the container associated with the same key as 𝑥, singleton 𝑥 if 𝑥 is not in the container.
Algorithm 1 presents the control function (loop) of our group recommendation algorithm. It loops

over the parameter 𝑘 (number of groups), increasing it until no significant global utility (sum of all

agents utility) gains have been achieved. To reduce the randomness of the process (our clustering

algorithm being randomized) each 𝑘 value is tried several times and the loop will only terminate if no
gain happen for several 𝑘 increments (momentum).
Algorithm 2 is based on k-means[Llo82]. The first step is the initialization of groups, which is

a k-means++[AV07] initialization (each group is given one single random member sequentially, with

probability increasing with the distance to existing groups). After initialization, the process consists

of two nested loops (inner and outer). Since, unlike k-means, we take group size into account, we need

two loops, one for distance changes (as k-means) and one for group size changes (the inner loop). In

the inner loop, at initialization, each group, has a fixed barycenter and is given a potential size of #𝐴.
At each turn, agents compute their utility for each group with the potential sizes and choose their

group accordingly. After that, the potential size of each group is set to the number of agents choosing

this group, the barycenters are not updated. The process is repeated until no change append in one

turn. In the outer loop, at each turn, the inner loop is executed and the barycenters are updated. The

loop terminates if no change append in one turn.

Compared with k-means, the interesting part of our algorithm is the inner loop. Since, unlike

k-means, our algorithm take the size of groups into account, we need this inner loop. It allows us to

compute agents’ utility with bigger groups. For agents to join groups, these groups have to be big

enough and for groups to be big, agents have to join them. Our inner loop, with its over-evaluated

groups’ initial potential sizes, breaks this circle. The main limitation of this algorithm is that we do

not have a theoretical termination proof for it. It could potentially, in very rare cases, get stuck in an

infinite loop. So, we propose variation with guaranteed termination in Algorithm 3.

Algorithm 3 terminates the inner loop if the total number of agents member of any group does not
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Algorithm 1: Recommendation algorithm

Data: 𝐴 set of agents, 𝑝 projector, 𝑝𝑟𝑐 is the number of (random) initial values to try, 𝑚𝑚𝑡
momentum effect

Result: A pair of a group affectations of agents and its value

1 𝑣𝑎𝑙 ← #𝐴
2 𝑘 ← 1
3 𝑝𝑚𝑚 ← 𝑚𝑚𝑡
4 repeat

5 𝑝𝑣𝑎𝑙 ← 𝑣𝑎𝑙
6 𝑣𝑎𝑙 ← #𝐴
7 repeat

8 𝑎𝑓𝑒𝑐𝑡 ← CLUSTER(𝐴, 𝑝, 𝑘)
9 𝑛𝑣𝑎𝑙 ← ∑𝑎∈𝐴 𝑛(𝑑(𝑝(𝑎), 𝑏𝑎𝑟𝑦(𝑎𝑓𝑒𝑐𝑡.𝑔𝑟𝑜𝑢𝑝(𝑎)))) × 𝑣(#𝑎𝑓𝑒𝑐𝑡.𝑔𝑟𝑜𝑢𝑝(𝑎))
10 if 𝑛𝑣𝑎𝑙 > 𝑣𝑎𝑙 then
11 if 𝑛𝑣𝑎𝑙 > 𝑝𝑣𝑎𝑙 then
12 𝑠𝑜𝑙 = 𝑎𝑓𝑒𝑐𝑡
13 𝑣𝑎𝑙 ← 𝑛𝑣𝑎𝑙

14 until 𝑝𝑟𝑐 times

15 𝑘 + +
16 if 𝑣𝑎𝑙 > 𝑝𝑣𝑎𝑙 then
17 𝑝𝑚𝑚 ← 𝑚𝑚𝑡
18 else

19 𝑝𝑚𝑚 − −

20 until 𝑝𝑚𝑚 = 0
21 return (𝑠𝑜𝑙, 𝑝𝑣𝑎𝑙)

change in one turn and the outer loop if the global utility of the affectation does not increase in one

turn. This way, the algorithm is guaranteed to converge.

Both algorithms include a somewhat complex formula to compute agent’s interest. For large

instances, with very big clusters, individual agents influence on a cluster can be considered negligi-

ble. We call this situation “agents’ atomicity” (agents are “atoms”, too small relatively to the whole

system to have significant influence individually). Thus, we can make an agents’ atomicity hypoth-

esis to simplify the formulas. 𝑛(𝑑(𝑝(𝑎), 𝑏𝑎𝑟𝑦(𝑔𝑟𝑝[𝑖] ∪ 𝑎))) × 𝑣(𝑠𝑖𝑧𝑒[𝑖] + 𝟙𝑎∉𝑔𝑟𝑝[𝑖]) can be replaced by

𝑛(𝑑(𝑝(𝑎), 𝑏𝑎𝑟𝑦(𝑔𝑟𝑝[𝑖]))) × 𝑣(𝑠𝑖𝑧𝑒[𝑖]). This possibility may be used for a production implementation.

III Theoretical analysis

Here we prove the essential property of the clustering algorithm presented in Algorithm 2.

Property (Nash equilibrium). If we consider a game where each agent’s (player) possible choices are

𝑘 different groups to join, or not choosing any group, and each agent’s 𝑎 payoff for choosing group

𝑔 is given by 𝑈𝑝(𝑎, 𝑔) as defined before and 1 for no choosing any group, the affectation outputed by

Algorithm 2, if it exists, is a (weak) Nash equilibrium for this game.

Proof (Nash equilibrium). We assume that our algorithm as converged, we consider the last iteration

of the loop guarded by 𝑛𝑔𝑟𝑝 = 𝑔𝑟𝑝 (line 11) and, in this iteration, the last iteration of the loop guarded
by 𝑛𝑠𝑖𝑧𝑒 = 𝑠𝑖𝑧𝑒 (line 15).
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Algorithm 2: Clustering algorithm

1 function CLUSTER(𝐴, 𝑝, 𝑘) is
/* k-means++ initialization */

2 𝑟𝑎 ← 𝑟𝑎𝑛𝑑(𝐴)
3 𝑛𝑔𝑟𝑝[0] ← {𝑟𝑎}
4 foreach 𝑎 ∈ 𝐴 do

5 𝑑𝑚𝑖𝑛2[𝑎] ← 𝑑(𝑝(𝑎), 𝑝(𝑟𝑎))2

6 for 1 ⩽ 𝑖 < 𝑘 do
7 𝑛𝑎 ← 𝑟𝑎𝑛𝑑(𝐴, 𝑑𝑚𝑖𝑛2)

/* random element from 𝐴, relatives probabilities given by 𝑑𝑚𝑖𝑛2 */

8 𝑛𝑔𝑟𝑝[𝑖] ← {𝑛𝑎} // appends {𝑛𝑎} to ngrp

9 foreach 𝑎 ∈ 𝐴 do

10 𝑑𝑚𝑖𝑛2[𝑎] ← min(𝑑(𝑝(𝑎), 𝑝(𝑛𝑎))2, 𝑑𝑚𝑖𝑛2[𝑎])

/* main loop */

11 repeat

12 𝑔𝑟𝑝 ← 𝑛𝑔𝑟𝑝
13 𝑛𝑔𝑟𝑝.𝑐𝑙𝑒𝑎𝑟()
14 𝑛𝑠𝑖𝑧𝑒 ← [#𝐴…#𝐴]
15 repeat

16 𝑠𝑖𝑧𝑒 ← 𝑛𝑠𝑖𝑧𝑒
17 𝑛𝑠𝑖𝑧𝑒 ← [0…0]
18 foreach 𝑎 ∈ 𝐴 do

19 𝑏𝑔𝑟𝑝[𝑎] ← argmax𝑖∈⊥∪⟦0,𝑘−1⟧(𝑛(𝑑(𝑝(𝑎), 𝑏𝑎𝑟𝑦(𝑔𝑟𝑝[𝑖] ∪ 𝑎))) × 𝑣(𝑠𝑖𝑧𝑒[𝑖] + 𝟙𝑎∉𝑔𝑟𝑝[𝑖]))
/* assuming 𝑔𝑟𝑝[⊥] = ∅ and 𝑠𝑖𝑧𝑒[⊥] = 0 */

20 𝑛𝑠𝑖𝑧𝑒[𝑏𝑔𝑟𝑝[𝑎]] + + // does nothing if 𝑏𝑔𝑟𝑝[𝑎] = ⊥

21 until 𝑛𝑠𝑖𝑧𝑒 = 𝑠𝑖𝑧𝑒
22 𝑛𝑔𝑟𝑝 ← 𝑏𝑔𝑟𝑝.𝑖𝑛𝑣𝑒𝑟𝑡𝑘𝑣() // key-value inversion

23 until 𝑛𝑔𝑟𝑝 = 𝑔𝑟𝑝
24 return 𝑛𝑔𝑟𝑝

Let’s assume that the output of the function, 𝑛𝑔𝑟𝑝 = 𝑔𝑟𝑝, is not a (weak) Nash equilibrium. Then
∃𝑎 ∈ 𝐴, 𝑔 ∈ ⊥ ∪ ⟦0, 𝑘 − 1⟧(𝑈𝑝(𝑎, 𝑔) > 𝑈𝑝(𝑎, 𝑔𝑟𝑝.𝑔𝑟𝑜𝑢𝑝(𝑎))).
Since at the end of the loop iteration 𝑛𝑠𝑖𝑧𝑒 = 𝑠𝑖𝑧𝑒 and 𝑛𝑠𝑖𝑧𝑒 is, by design, the vector of the sizes of
the groups given by 𝑛𝑔𝑟𝑝, we can affirm that, during the considered loop iteration (assimilating 𝑖 with
a group), 𝑈𝑝(𝑎, 𝑔𝑟𝑝[𝑖]) = 𝑛(𝑑(𝑝(𝑎), 𝑏𝑎𝑟𝑦(𝑔𝑟𝑝[𝑖] ∪ 𝑎))) × 𝑣(𝑠𝑖𝑧𝑒[𝑖] + 𝟙𝑎∉𝑔𝑟𝑝[𝑖]).

Since, by design, our algorithm selects 𝑖 to maximize 𝑛(𝑑(𝑝(𝑎), 𝑏𝑎𝑟𝑦(𝑔𝑟𝑝[𝑖]∪𝑎)))×𝑣(𝑠𝑖𝑧𝑒[𝑖]+𝟙𝑎∉𝑔𝑟𝑝[𝑖]),
we can affirm that, in this loop iteration, a different group would have been selected for at least one 𝑎.
Now, either that changes the size of at least one group, implying 𝑛𝑠𝑖𝑧𝑒 ≠ 𝑠𝑖𝑧𝑒 at the end of the loop,
which is a contradiction. Or, if the sizes remains identical (exchange of members), then, the loop

guarded by 𝑛𝑠𝑖𝑧𝑒 = 𝑠𝑖𝑧𝑒 exists, and we get 𝑛𝑔𝑟𝑝 ≠ 𝑔𝑟𝑝, which also is a contradiction.2

Since the existence of a Nash equilibrium for this game is not guaranteed, it is possible that

Algorithm 2 does not terminate. Now, we prove that Algorithm 3, for which we do not have an

equilibrium proof, will always terminate.

Property (Convergence). Algorithm 3 always terminates.

Proof (Convergence). Among the control structures used in Algorithm 3, the two repeat…until loops
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are the only that do not trivially terminate (for loops terminate trivially). For the inner loop, we

replaced 𝑛𝑠𝑖𝑧𝑒 = 𝑠𝑖𝑧𝑒 by 𝑛𝑠𝑖𝑧𝑒.𝑠𝑢𝑚() ⩾ 𝑠𝑖𝑧𝑒.𝑠𝑢𝑚() as termination condition. This implies that,
during the loop, 𝑠𝑖𝑧𝑒.𝑠𝑢𝑚()’s values are a strictly decreasing natural (ℕ) sequence. Such a sequence
can not be infinite, thus, the inner loop terminates. For the outer loop, we replaced 𝑛𝑔𝑟𝑝 = 𝑔𝑟𝑝 by
𝑛𝑣𝑎𝑙 ⩽ 𝑣𝑎𝑙 as termination condition. This implies that, during the loop, 𝑣𝑎𝑙’s values are a strictly
increasing real sequence. Moreover, those values are given by a formula taking as parameter an

affectation of a finite number of agents in a finite number of groups. The possible inputs for this

formula for a given execution of the algorithm (fixed parameters) are a finite set. This implies that

the possible values for 𝑣𝑎𝑙 (output of this formula) are also a finite set (for a given execution of the
algorithm). Thus, 𝑣𝑎𝑙’s values are a strictly increasing sequence of elements of a finite set (the order
is given by the classical order for real number). Such a sequence can not be infinite, thus, the outer

loop terminates. We can now conclude that our algorithm will always terminate.2

We note that Algorithm 3 is not guaranteed to give a Nash equilibrium. Such an equilibrium may

simply not exist, but even if it exists, the algorithm is not guaranteed to find it. Due to the end

condition of its outer loop, Algorithm 3, while still based on agents’ self-interest, is more centered on

attaining general optimality (maximizing the sum of all agents utilities) than Algorithm 2.

An important thing that differentiates our algorithm from generic approaches to solve hedonic

games presented in [AS16] is the inner loop of our algorithm, which allows groups to grow to a point

that is better for every agent even in situations where individual rational decisions could not.

Let’s examine this simple example : We have four agents, 𝐴, 𝐵, 𝐶 and 𝐷. 𝑛(𝑥) = 1
1+𝑥 , 𝑣(𝑥) = 𝑥,

𝑝’s values in ℝ2, 𝑝(𝐴) = [0, 0], 𝑝(𝐵) = [0, 2.5], 𝑝(𝐶) = [2.5, 0] and 𝑝(𝐷) = [2.5, 2.5] (a square).
In this example, having all agents in a single group, 𝒢, is the best solution. ∀𝑎∈{𝐴,𝐵,𝐶,𝐷}𝑈𝑝(𝑎, 𝒢) =
4

1+2.5
√

2/2
> 1. But this situation could not be reached from groups consisting of a single agent by

individual rational decisions, since the best interest one single agent could get from grouping with

another agent would be 2
2.25 < 1, so no agent would want to group with any other. With our

algorithm, if we start with a group 𝒢 = {𝐴}, due to making computations based on the potential
maximum size of the group rather than its actual size, individual interest of 𝐵 and 𝐶 for join the

group would be estimated at 4
3.5 > 1 with an atomic variant (even more with a non-atomic variant)

and the group 𝒢 will be updated 𝒢 = {𝐴, 𝐵, 𝐶}. On the second run of the inner loop, with the bary
center of 𝒢 being at [2.5/3, 2.5/3], the atomic-estimated interest for 𝐷 to join 𝒢 would be 4

1+5/3
√

2 > 1.
We end up with 𝒢 = {𝐴, 𝐵, 𝐶, 𝐷}.

IV Experimentation

In this section, we evaluate Algorithm 3, in normal an atomic agents variants and see how much,

in practice, it deviates from Algorithm 2’s Nash equilibrium property. We compare our algorithm with

two reference clustering algorithms: OPTICS [Ank+99] and k-means [Llo82] with k-means++ [AV07]

initialization. All algorithms evaluated have guaranteed termination. We perform this evaluation on

four kinds of datasets: synthetic data and three real data applications: leisure travel, buying and

machine-learning.1

IV.1 Synthetic Data

We first evaluate our algorithm on ℝ2 data generated using a combination of Gaussian distributions.

We choose Gaussians because those distributions are usually considered good models of characteristics

distribution in real populations. A fixed number of points is generated, the distribution used to

generate each vector is chosen randomly according to a predetermined ratio. Parameters of these laws

will be detailed in each specific tests. We used the usual euclidean distance for 𝑑, 𝑛(𝑥) = 1
1+𝑥 and

1Our code is available at https://gitlab.inria.fr/abouchra/distributed_neural_networks
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(a) AUCCCR-C (b) AUCCCR-CA

(c) k-means (d) OPTICS

Figure 1: Clusters found in Bi-Gaussian

𝑣(𝑥) =
√

𝑥. 𝑝𝑟𝑐 = 20 (number of trials with the same parameters), 𝑚𝑚𝑡 = 5 (momentum). Results
are average over 10 runs, error bars indicate standard deviation. Example results, based on a single

run (same data for all algorithms), are also given. In these, a color identify a cluster, gray points are

alone (or in a cluster of size 1). “AUCCCR-C” is Algorithm 3 in its normal variant, “AUCCCR-CA”

is the atomic variant.

IV.1.a Bi-Gaussian

For this test, we used two (0, 0)-centered Gaussian distributions with 1 and 8 as standard deviations
and a 0.5 − 0.5 ratio (same probability for each distribution). The number of point is 100.
Figure 1 presents a sample output of the four algorithms. In these, a color identify a cluster, gray

points are alone (or in a cluster of size 1). Figure 2c shows the global utility, as a sum of all agents’

utility, for each algorithm. Figure 2a shows the sum of the losses of agents, which is the difference

between the utility an agent gets from the present cluster affectation and the maximum utility the

agent could get if the agent chooses its cluster (or being alone) following its own interest. Figure 2b

shows the share of agents experiencing losses.

In this test, we see that AUCCCR-C(A) yields a lower global utility but also that its output is

very close to a Nash equilibrium (near 0 losses), while k-means and OPTICS have more than 25% of

agents experiencing losses. Looking at individual runs, we see that k-mean and OPTICS just produce

a single giant cluster, maximizing its value for all agent but causing losses for agents that lie far away

from the barycenter, while our algorithm, because it allows agent to stay on their own, took more care

of their individual interest.
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(c) Global utility achieved

Figure 2: Metrics in Bi-Gaussian for all algorithms

IV.1.b 3 Gaussians

For this test, we used three Gaussian distributions, (−6, 0), (0, 0) and (0, 6)-centered with 1.5 as
standard deviations and a 0.33−0.33−0.33 ratio (same probability for each distribution). The number
of point is 200.
Figure 3 presents a sample output of the four algorithms. In these, a color identify a cluster, gray

points are alone (or in a cluster of size 1). Figure 4c shows the global utility, as a sum of all agents’

utility, for each algorithm. Figure 4a shows the sum of the losses of agents, which is the difference

between the utility an agent gets from the present cluster affectation and the maximum utility the

agent could get if the agent chooses its cluster (or being alone) following its own interest. Figure 4b

shows the share of agents experiencing losses.

In this test, we see that AUCCCR-C(A) and k-means both perform well it terms of global utility,

better than OPTICS, likely due to OPTICS density-centered design being ineffective for this kind of

pattern ; OPTICS has difficulties in distinguishing close but clearly distinct distributions. Losses were

limited but AUCCCR clearly outperformed k-mean and, even more, OPTICS.

IV.1.c Gaussians Star

For this test, we used five Gaussian distributions, (0, 0), (−10, −10), (−10, 10), (10, −10) and
(10, 10)-centered with 5 for the (0, 0) and 2 for others as standard deviations and a 0.5 − 0.125 −
0.125 − 0.125 − 0.125 ratio. The number of point is 300.
Figure 5 presents a sample output of the four algorithms. In these, a color identify a cluster, gray

points are alone (or in a cluster of size 1). Figure 6c shows the global utility, as a sum of all agents’

utility, for each algorithm. Figure 6a shows the sum of the losses of agents, which is the difference

between the utility an agent gets from the present cluster affectation and the maximum utility the

agent could get if the agent chose its cluster (or being alone) following its own interest. Figure 6b

shows the share of agents experiencing losses.

In this test, all algorithms gave similar results in terms of global utility (slightly lower for AUCCCR

on average). The gap much higher on losses, with AUCCCR clearly leading. Looking at samples, it

seems that AUCCCR performed pretty well for identifying the five Gaussians mixed in the input data

compared to k-means and OPTICS.

IV.1.d Effect of the number of agents

In this test we reused our Gaussians Star setup, but we tested different numbers of agents.

Figure 7c shows the global utility, as an average of all agents’ utility, for each algorithm. Figure 7a

shows the average of the losses of agents, which is the difference between the utility an agent gets from

the present cluster affectation and the maximum utility the agent could get if the agent chooses its

cluster (or being alone) following its own interest. Figure 7b shows the share of agents experiencing

8/33



Agent Utility Centered Clustering for Cooperation Recommendation Amaury Bouchra Pilet et al.

(a) AUCCCR-C (b) AUCCCR-CA

(c) k-means (d) OPTICS

Figure 3: Clusters found in 3 Gaussians

losses.

We see here that all algorithms have similar performances in terms of global utility; AUCCCR

being slightly better for a high number of agents. In terms of losses, however, OPTICS and k-means

seems to perform better for low numbers of agents. This is likely due to the fact that AUCCCR is

used with an algorithm to find optimal 𝑘 which optimizes global utility rather than loss. For k-mean
and OPTICS, both simply put all agents in one cluster, which, for this number of agents, is a Nash

equilibrium, but not necessarily an optimal affectation. Used with this 𝑘 researcher, AUCCCR ended
up being better for global utility and not for losses, while it is designed to minimize losses, in this

specific case were a trivial (one cluster) affectation is a Nash equilibrium. Note that the losses are still

very low compared to what k-means and OPTICS did for lower numbers of agents.

IV.1.e Effect of the standard deviations

In this test we reused our Gaussians Star setup, but we tested different standard deviations.

Figure 8c shows the global utility, as an average of all agents’ utility, for each algorithm. Figure 8a

shows the average of the losses of agents, which is the difference between the utility an agent gets from

the present cluster affectation and the maximum utility the agent could get if the agent chooses its

cluster (or being alone) following its own interest. Figure 8b shows the share of agents experiencing

losses.

The value used in the “Standard deviations” axis is the (0, 0)-centered distribution’s standard
deviations. Others were modified by the same factor, as well as the distances between distributions’

centers.

With a high standard deviation, the optimal solution becomes essentially to have nearly as many

clusters as agents. k-means performs much worse than other algorithms (nearly all agents have losses,

while nearly none have for other algorithms) because it is not designed to find this kind of affectation.
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(c) Global utility achieved

Figure 4: Metrics in 3 Gaussians for all algorithms

AUCCCR and OPTICS have similar performance overall, except for 10. In losses, AUCCCR is the

only algorithm to always remain at very low values. For the value 10, while AUCCCR was slightly

lower for global utility, it is by far the best for losses.

IV.1.f Effect of scale

In this test we reused our Gaussians Star setup and combined the two previous tests, modifying

at the same time, standard deviations, number of agents and mean values separations by the same

scale factor (for geometrical reasons, this implies that the distances were increased by the square root

of this factor).

Figure 9c shows the global utility, as an average of all agents’ utility, for each algorithm. Figure 9a

shows the average of the losses of agents, which is the difference between the utility an agent gets from

the present cluster affectation and the maximum utility the agent could get if the agent chooses its

cluster (or being alone) following its own interest. Figure 9b shows the share of agents experiencing

losses.

Here we observe that AUCCCR can have difficulties with certain scale values, around 2 or 4, in

terms of global utility, while being more competitive for a higher value of 8. This is probably due to

such scales offering more opportunity for AUCCCR to deviate from the global optimum in favor of

reducing individual losses. In terms of losses, however, AUCCCR remains extremely low for all value,

while other algorithms get much worse results.

IV.1.g Size constraint

To evaluate the ability of our algorithm to manage cases where too large clusters are not wanted

(agents want to be in a sufficiently large group but not too large) we take a simple case, with a single

Gaussian, in which our usual 𝑣(𝑥) =
√

𝑥 function would make a single cluster (with all agents in it)
optimal. We then change 𝑣(𝑥) so that too large clusters are not optimal.
We test two different functions, both =

√
𝑥 for 𝑥 ⩽ 20, but for 𝑥 > 20 the first function is constant√

20 while the second is decreasing √ 20
1+ |20−𝑥|

20
(both functions are continuous). The number 20 is an

arbitrary choice and can be considered as a target size for clusters. See Figure 10 for a plot.

Figure 11 presents the clusters obtained with the different algorithms and 𝑣(𝑥) functions. You can
see the precise size of each cluster in Figures 12 (

√
𝑥), 13 (

√
20) and 14. (√ 20

1+ |20−𝑥|
20
). Metric are shown

in Figures 15 (
√

𝑥), 16 (
√

20) and 17. (√ 20
1+ |20−𝑥|

20
).

We see that changing the 𝑣(𝑥) function is a good way to adapt AUCCCR to size constraints.√
20 is sufficient as the effect of distance reduces interest for larger (necessarily sparser) groups, even

through √ 20
1+ |20−𝑥|

20
has a stronger effect. A downside of √ 20

1+ |20−𝑥|
20

is that AUCCCR is not designed for
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(a) AUCCCR-C (b) AUCCCR-CA

(c) k-means (d) OPTICS

Figure 5: Clusters found in Gaussians Star

decreasing 𝑣(𝑥) functions and we see that we get (too) small clusters in that case, but this does not
prevent the algorithm from working correctly. AUCCCR performs quite well in terms of size of cluster

(close to the target size). AUCCCR clusters tends to be large, some times a bit larger than wanted,

compared to k-means and, even more, OPTICS, which produce too small clusters. With the metrics,

we see that our algorithm continues to outperform others in the same way as with other experiments

with
√

20, with √ 20
1+ |20−𝑥|

20
however, k-means’ results are very close to AUCCCR’s.

IV.2 The BuddyMove dataset

The BuddyMove[RA14] dataset consists of statistics from users of a travel review website. For each

user, the dataset gives the number of review wrote for each of 6 classes of destination (e.g. religious

site, park, etc). From these data, we derived for each user the share of reviews written for each

destination class. This can be interpreted as the relative interest of a user for each kind of destination.

This could allow providing recommendation to users on whom they should go with for group travels,

based on the similarity of their preferences.

IV.2.a Hyperparameters

Our clustering algorithms used Euclidean distance for 𝑑, 𝑛(𝑥) = 1
1+𝑥 and 𝑣(𝑥) =

√
𝑥. 𝑝𝑟𝑐 = 20,

𝑚𝑚𝑡 = 5. Results are average over 10 runs, error bars indicates standard deviation. Sample examples,
based on a single run, are also given. In these, a color identify a cluster, gray points are alone (or in

a cluster of size 1). “AUCCCR-C” is Algorithm 3 in its normal variant, “AUCCCR-CA” is the atomic
variant. An additional Hyperparameter is used: scale. The scale describes how “far” a given distance is

considered by the algorithm (the distances naturally present in the dataset must be given an absolute

cardial signification for the algorithm or its formalization make no sens). For example, if the scale is
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Figure 6: Metrics in Gaussians Star for all algorithms
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Figure 7: Metrics in Gaussians Star for different numbers of agents by different algorithms

10, a distance of 1 will be computed as 10 for computation. If the scale is bigger, distance between
points will be considered longer by the algorithm.

IV.2.b Metrics

The graphs in Figure 18 presents the 3 following metrics : the average utility of agents (Figure 18c),

the average losses of agents (Figure 18a) and the share of agents having losses (Figure 18b) for a range

of scale values. The range of scale is selected to cover all the range of cases from a situation where

everyone alone is optimal to a situation were a universal cluster is optimal.

We note that, is those graphs, the lines for the two variants of AUCCCR are largely superposed,

and k-means and OPTICS are identical. For a low scale, users are considered close and all algorithms

will detect a single cluster but, as the scale increases, the results become very different. AUCCCR,

contrary to the reference algorithms, will prevent individual losses ; as we can see, losses are very low

for AUCCCR, especially for large scales, while, for other algorithms, losses increase dramatically. For

a scale of 130, AUCCCR has nearly 0 agents losses while k-mean and OPTICS have 30%. This comes
at the cost of a reduced global utility, which slowly drops until it nearly hits 1 (equivalent to everyone
alone) at 130. For midrange values, we see that AUCCCR has nearly no losses with a still high global
utility (1.5, 1.7 for reference algorithms; this lower value being due to the small size of clusters possible
with minimal individual losses) while reference algorithms have 15% to 20% of losses.

12/33



Agent Utility Centered Clustering for Cooperation Recommendation Amaury Bouchra Pilet et al.

10 20 30 40
0

0.2

0.4

0.6

Standard deviations

A
g
en
ts
’
lo
ss
es
(a
v
er
a
g
e)

(a) Agents’ losses caused

10 20 30 40
0%

50%

100%

Standard deviations
A
g
en
ts
lo
si
n
g
(r
a
te
)

AUCCCR-C

AUCCCR-CA

k-means

OPTICS

(b) Share of agents having losses

10 20 30 40
0

2

4

6

Standard deviations

G
lo
b
a
l
u
ti
li
ty
(a
v
er
a
g
e)

(c) Global utility achieved

Figure 8: Metrics in Gaussians Star for different standard deviations by different algorithms
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Figure 9: Metrics in Gaussians Star for different scales by different algorithms

IV.2.c Clusters size

The graphs in Figure 19 gives the obtained clusters sizes for the different algorithms with a scale

of 115. We see that, for this midrange scale, k-means and OPTICS identified only a universal cluster,

while both AUCCCR variants identified 3 and let numerous users alone.

IV.2.d Clusters visualisation

Since the dataset has a large dimension (6), we provide views in reduced dimensions, 2 and 3. We
propose two different kinds of dimension reduction methods. The first simply presents the dimensions

were the original dataset has higher standard deviation. See Figure 20 for 2D and Figure 21 for 3D. The

second uses the scikit-learn[Ped+11] Python library, which implements various algorithms that can

perform non-linear dimension reduction. The specific algorithm we used is MDS (Multi-Dimensional

Scaling)[BG97]. See Figure 22 for 2D and Figure 23 for 3D.

IV.3 The Wholesale dataset

The Wholesale [Fer11] dataset consists of statistics from customers of a wholesale vendor. For each

customer, the dataset indicates the annual spending for each of 6 classes of products (e.g. fresh, frozen,

etc). From these data, we derive for each customer the share of reviews written for each product class.

This result could for instance be used to provide recommendations to customers on whom they should

collaborate with to make grouped orders more directly, removing the wholesale distributor from the
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Figure 10: Group value functions

circuit (short circuit distribution), based on which kind of products they usually order.

IV.3.a Hyperparameters

We configure our clustering algorithms to use the Euclidean distance for 𝑑, 𝑛(𝑥) = 1
1+𝑥 and

𝑣(𝑥) =
√

𝑥. 𝑝𝑟𝑐 = 20, 𝑚𝑚𝑡 = 5. Results are average over 10 runs, error bars indicate standard
deviation. Sample examples, based on a single run, are also given. In these, a color identify a

cluster, gray points are alone (or in a cluster of size 1). “AUCCCR-C” is Algorithm 3 in its normal

variant, ‘AUCCCR-CA” is the atomic variant. An additional Hyperparameter is used: scale. The scale

describes how “far” a given distance is considered by the algorithm (the distances naturally present in

the dataset must be given an absolute cardial signification for the algorithm or its formalization make

no sens). For example, if the scale is 10, a distance of 1 will be computed as 10 for computation. If
the scale is bigger, distance between point will be considered longer by the algorithm.

IV.3.b Metrics

The graphs in Figure 24 presents the 3 following metrics : the average utility of agents (Figure 24c),

the average losses of agents (Figure 24a) and the share of agents having losses (Figure 24b) for a range

of scale values. The range of scale is selected to cover all the range of cases from a situation where

everyone alone is optimal to a situation were a universal cluster is optimal.

We note that, is those graphs, the lines for the two variants of AUCCCR are largely superposed.

For a low scale, users are considered close and all algorithms will detect a single cluster but, as the

scale increases, the results become very different. AUCCCR, contrary to the reference algorithms, will

prevent individual losses ; as we can see, losses are close to 0 for AUCCCR, especially for large scales,
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Figure 11: Clusters with various algorithms and different 𝑣(𝑥)

while, for other algorithms, losses increase dramatically. For a scale of 60, AUCCCR has nearly 0
agents losses while k-mean has > 30% and OPTICS has > 40%. The global utility remains similar to
k-means and greater than OPTICS for the lower half of scales, only higher values have a utility lower

than OPTICS but still very close from both, OPTICS and k-means. For midrange values, we see that

AUCCCR has nearly no losses with a global utility close to k-means and higher than OPTICS, while

reference algorithms have around 10% of losses.

IV.3.c Clusters size

The graphs in Figure 25 gives the obtained clusters sizes for the different algorithms with a scale

of 45. We see that, for this midrange scale, k-means and OPTICS identified only a universal cluster,

while both AUCCCR variants identified 3 and let numerous users alone.

IV.3.d Clusters visualisation

Since the dataset has a large dimension (6), we provide views in reduced dimensions, 2 and 3. We
propose two different kinds of dimension reduction methods. The first simply presents the dimensions

were the original dataset has higher standard deviation. See Figure 26 for 2D and Figure 27 for 3D. The

second uses the scikit-learn[Ped+11] Python library, which implements various algorithms that can

perform non-linear dimension reduction. The specific algorithm we used is MDS (Multi-Dimensional

Scaling)[BG97]. See Figure 28 for 2D and Figure 29 for 3D.
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(c) k-means
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(d) OPTICS

Figure 12: Clusters size with
√

𝑥 by different algorithms

IV.4 Machine-learning Data - MNIST

As a more concrete application, we evaluate our program on machine-learning data. We use here

classical multi-layer perceptrons (MLP) on the well-known MNIST dataset.

The task associated with the MNIST dataset is handwritten digits recognition. From this task, we

want to obtain a cooperation recommendation task. There are various distributed machine-leaning

methods, as the one presented in [BFT21]. These methods imply cooperation between different MLPs.

Now, we want our MLPs to have more or less similar tasks. To this aim, we simply modified the MNIST

task for some of those MLPs: part of our MLPs have to perform the standard digit recognition task,

while others have to perform a modified task where two digits are exchanged, so a [9] would be classified

as a eight and vis versa. The clustering task would be to assign to the same cluster MLPs with the

same task and different clusters MLPs with different tasks.

Since our clustering algorithms takes real vectors as inputs, we need to make real vectors from our

MLPs. The most straightforward way would be to directly take the MLPs learned parameters, which

are real values, but this is not a good way. Due to the nature of neural networks, similar learned tasks

absolutely do not imply similar learned parameters. For this reason, we used a different method. After

a reasonable amount of training, we made each MLP work on the test part of the MNIST dataset.

For each different digit tested (from 0 to 9), we took the average of the outputs of each MLP (10 real
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Figure 13: Clusters size with
√

20 by different algorithms

values, which are the MLPs estimated likeliness of the input image to be each of the digits from 0 to

9) and concatenated them in one ℝ100 vector. These vectors will be used as input for our clustering

algorithms.

We use two metrics to evaluate the quality of the outputted affectation: the Identification rate,

which is the share of the pairs of MLPs with identical task being in the same cluster, and the Differ-

entiation rate, which is the share of the pairs of MLPs with different tasks being in different clusters.

We want both value to be as close to 1 as possible.
We trained 16 MLPs, 9 of them performing a standard classification task and 7 of them have 8

and 9 permuted. They were trained each on a different part of the MNIST dataset training part of

size 3500. The MLPs had a 784=300=100=10 configuration with 𝜆 = 1 sigmoid activation functions
and a 0.1 learning rate. The ℝ100 vectors where built from the 1000 first values of the MNIST dataset

test part.

Our clustering algorithms used euclidean distance for 𝑑, 𝑛(𝑥) = 1
1+15𝑥 and 𝑣(𝑥) =

√
𝑥. 𝑝𝑟𝑐 = 20,

𝑚𝑚𝑡 = 5. Results are average over 10 runs, error bars indicates standard deviation. Sample examples,
based on a single run, are also given. In these, a color identify a cluster, gray points are alone (or in

a cluster of size 1). “AUCCCR-C” is Algorithm 3 in its normal variant, ‘AUCCCR-CA” is the atomic
variant.
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Figure 14: Clusters size with √ 20
1+ |20−𝑥|

20
by different algorithms

The MLPs were trained with stochastic gradient descent, with a mini-batch size of 1000 and

different number of mini-batches.

Figure 30a presents the identification rate for various numbers of mini-batches and Figure 30b the

differentiation rate.

We essentially observe that all algorithms remains close to perfect for all tests. While those

tests on a very simple case do not allow determining which algorithm would be the best, they prove

the validity of the idea of using clustering algorithms to provide cooperation recommendations for

distributed machine-learning.

Figure 31 gives examples of cluster affectation outputted by AUCCCR-C. Since we used vectors

from a space of dimension 100, we selected to relevant dimensions, 89 and 99 (corresponding to

permuted digits), to make these 2D plots.

IV.5 Machine-learning Data - VSN

To go farer than our previous experiment with MNIST, we use a different task: vehicle recognition

from sensors. We use a dataset from [DH04]. This dataset contains data from sensors (notably seismic

and acoustic sensors) produced while some (military) vehicle passes near the sensor. In that case, no
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Figure 15: Metrics with
√

𝑥 for all algorithms
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Figure 16: Metrics with
√

20 for all algorithms

obvious group affectation is possible without relying on clustering, allowing us to evaluate how our

approach allows to effectively get better performance than a reference.

The task proposed is to recognize the class of vehicle (assault amphibious or dragon wagon) from

each sensor’s data (binary classification). To allow a MLP to perform this task, the data from each

set of sensors (node) is first transformed into 50 seismic and 50 acoustic features (100 total inputs).

This process (based on Fast Fourier Transform) is described in the original paper ([DH04]).

As for MNIST, we rely on the approach of distributed multi-task machine learning presented in

[BFT21] For our distributed multi-task setup, we consider each node as a peer. The tasks are similar,

since all peer what to classify the same kinds of vehicles from the same kind of data, but different due

to the location of sensors influencing their output.

To get real vectors for our clustering algorithms, as we do with MNIST, we take locally pre-trained

networks (one for each peer) and test them on a standard set inputs. From the obtained output, we

construct ℝ2 vectors from the average output of networks on each type of vehicle.

For this experiment we use 16 peers, each with a training set of 50 samples. The mini-batch size

is 25. We use an MLP with a 100=50=20=1 layout, trained with stochastic gradient descent, 𝜆 = 1
sigmoid activation functions and a 0.1 learning rate.Our clustering algorithms used euclidean distance
for 𝑑, 𝑛(𝑥) = 1

1+15𝑥 and 𝑣(𝑥) =
√

𝑥. 𝑝𝑟𝑐 = 20, 𝑚𝑚𝑡 = 5. Results are average over 10 runs.
We start with a local pre-training phase of 400 mini-batches. Then, we use the output of the

pre-trained networks on a (identical for all peers) test set of 1000 samples to get inputs for clustering.

With the output of our clustering algorithm, we define partial models (see [BFT21] for details) to

use for the real training phase of 400 mini-batches (we restart from 0 for a fair comparaison with

reference results) and perform tests on 200 samples (specific to each peer). Here, the performance
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Figure 17: Metrics with √ 20
1+ |20−𝑥|

20
for all algorithms
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Figure 18: Metrics in Buddymove for different scales by different algorithms

of our clustering algorithm is not evaluated by the affectation itself but by the performance of the

resulting machine learning process (median accuracy).

Figure 32 gives examples of cluster affectation outputted by different algorithms. Figure 33 com-

pares the performance of the reference from [BFT21] to what can be achieved using affectations

obtained from our clustering algorithms (k-means and OPTICS both failed to provide meaningful

affectations).

While no obvious cluster affectation is visible, AUCCCR manages to find some clusters (differences

between samples from the two variants of AUCCCR are more likely due to randomness than real

difference between the two algorithms). k-means and OPTICS however both fail in this difficult case.

k-means and OPTICS fail to provide meaningful clustering information, not allowing any gain

over reference (all logical affectations derivable from their outputs are in reference). With AUCCCR,

however, we get two cluster affectations, from each of which can be derived several averaging schemes

(see [BFT21] for details).

We present results of three different schemes, which can be considered the most obvious possibilities:

• per class: A 100-50-20-1 (full network) model for each cluster (out of clusters peers are trained

locally).

• semi-local: A 100-35-14-1 for all peers and a 0-15-6-0 (dependent on the previous one) for each

cluster (leaving nothing local for peers in clusters).

• semi-local+local: A 100-35-14-1 for all peers and a 0-7-3-0 (dependent on the previous one)
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Figure 19: Clusters size in Buddymove for scale 115 by different algorithms

for each cluster (leaving 0-8-3-0 local for peers in clusters).

Notice that those are only there of the numerous possibilities offered in our case by [BFT21]’s

approach. We chose those because they are the most consistent with results from [BFT21] but further

optimization is possible and may lead to better results, even through [BFT21] concluded that the

solution we used in semi-local+local was the best in their experiments.

As we see in results, per class does not beat reference, likely due to lots of peers being out of classes

(the performance is slightly higher than local learning). Semi-local achieve reference-like performance,

likely because the gain from clusters is cancelled by the loss from lack of intra-cluster differentiation.

Semi-local+local, however, manages to obtain (slightly) better than reference results. The gain is

limited but similar to what reference achieved with partial averaging compared to global.

IV.6 General analysis of results

On our synthetic data tests, we showed that our algorithm is more efficient for cluster identification

than classical clustering algorithms. It also appeared that, as intended, our algorithm causes much

lower individual losses to agent than other algorithms. While it is not possible to completely remove

losses in the absence of a Nash (or similar) equilibrium for mathematical reasons, our algorithm
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Figure 20: Clusters found in Buddymove@115

manages to keep such losses low, reducing the risk of agent unsatisfaction and collapse.

Our algorithm also exhibited good performance on the two real datasets, Buddymove and Whole-

sale, proving its applicability to real use cases.

We also proved that our idea of using clustering algorithms to identify good collaboration opportu-

nities in distributed machine learning is valid, with our MLP-MNIST example, and that in could lead

to performance improvement in cases where no manual affectation is possible, with our MLP-VSN

example.

V Related work

Hedonic games as a theoretical model were originally proposed in the economic community by

[DG80]. More recently, this field has been studied by the algorithmic community. The authors of

[AS16] summarize algorithmic studies of these games. Existing algorithmic solutions all relies on some

kind of equilibrium (similar to Nash equilibrium) which may not exist in real applications.

In addition to those general researches on hedonic games, some researchers considered using hedonic

games to solve practical problems. For example, [Saa+10] worked on collaboration between roadside

units in Intelligent Transportation Systems. [Ang+18] considered hedonic games in the context of Fog

Computing. Application of these games to edge computing is also proposed in [ZCY17]. These games

can also be applied to energy networks, as suggested by [Mei+19]. Each of these articles presents its

own model and algorithm, to solve the specific problem they are considering.

The most known clustering algorithm is k-means[Llo82]. A lot of variants have been proposed,

notably k-means++[AV07], which improves its initialization. There are also variants of k-means with

size constraints [GCT14; Tan+19] or density [DV05] but such variants can only find clusters with
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Figure 21: Clusters found in Buddymove@115

similar characteristics (size/density) leading to results unwanted for our application (the graphs in

[GCT14] show this clearly). Another well-known clustering algorithm is OPTICS[Ank+99], which can

be seen as an improved DBSCAN[Est+96]; both OPTICS and DBSCAN are density-based (k-means

is distance-based).

Through they did not formalized the problem as an hedonic game, the authors of [SvW19] also

propose to use a clustering algorithm for coalition formation in the specific context of machine learning.

This work did not proposed a novel algorithm and simply used a variant of DBSCAN. OPTICS, which

we tested and proved limited in our experiments, being an improved DBSCAN, we can affirm that the

solution proposed in [SvW19] would not exhibit good results compared to ours.

VI Conclusion

In this work, we defined a new class of hedonic games on which we based a algorithm for providing

cooperation recommendation. We compared our algorithm to classical clustering algorithm that could

have also been used for the same recommendation problem. We proved that our algorithm yields

results that exhibit close to no losses and are thus much to a Nash equilibrium (which does not exist

in the general case) than other algorithms.
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Figure 24: Metrics in Wholesale for different scales by different algorithms
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Figure 25: Clusters size in Wholesale for scale 45 by different algorithms
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Algorithm 3: Clustering algorithm with guaranteed convergence

1 function CLUSTERCONV(𝐴, 𝑝, 𝑘) is
/* k-means++ initialization */

2 𝑟𝑎 ← 𝑟𝑎𝑛𝑑(𝐴)
3 𝑛𝑔𝑟𝑝[0] ← {𝑟𝑎}
4 foreach 𝑎 ∈ 𝐴 do

5 𝑑𝑚𝑖𝑛2[𝑎] ← 𝑑(𝑝(𝑎), 𝑝(𝑟𝑎))2

6 for 1 ⩽ 𝑖 < 𝑘 do
7 𝑛𝑎 ← 𝑟𝑎𝑛𝑑(𝐴, 𝑑𝑚𝑖𝑛2)

/* random element from 𝐴, relatives probabilities given by 𝑑𝑚𝑖𝑛2 */

8 𝑛𝑔𝑟𝑝[𝑖] ← {𝑛𝑎} // appends {𝑛𝑎} to ngrp

9 foreach 𝑎 ∈ 𝐴 do

10 𝑑𝑚𝑖𝑛2[𝑎] ← min(𝑑(𝑝(𝑎), 𝑝(𝑛𝑎))2, 𝑑𝑚𝑖𝑛2[𝑎])

11 𝑛𝑣𝑎𝑙 ← #𝐴
/* main loop */

12 repeat

13 𝑣𝑎𝑙 ← 𝑛𝑣𝑎𝑙
14 𝑔𝑟𝑝 ← 𝑛𝑔𝑟𝑝
15 𝑛𝑔𝑟𝑝.𝑐𝑙𝑒𝑎𝑟()
16 𝑛𝑠𝑖𝑧𝑒 ← [#𝐴…#𝐴]
17 repeat

18 𝑠𝑖𝑧𝑒 ← 𝑛𝑠𝑖𝑧𝑒
19 𝑛𝑠𝑖𝑧𝑒 ← [0…0]
20 foreach 𝑎 ∈ 𝐴 do

21 𝑏𝑔𝑟𝑝[𝑎] ← argmax𝑖∈⊥∪⟦0,𝑘−1⟧(𝑛(𝑑(𝑝(𝑎), 𝑏𝑎𝑟𝑦(𝑔𝑟𝑝[𝑖] ∪ 𝑎))) × 𝑣(𝑠𝑖𝑧𝑒[𝑖] + 𝟙𝑎∉𝑔𝑟𝑝[𝑖]))
/* assuming 𝑔𝑟𝑝[⊥] = ∅ and 𝑠𝑖𝑧𝑒[⊥] = 0 */

22 𝑛𝑠𝑖𝑧𝑒[𝑏𝑔𝑟𝑝[𝑎]] + + // does nothing if 𝑏𝑔𝑟𝑝[𝑎] = ⊥

23 until ∑ 𝑛𝑠𝑖𝑧𝑒 ⩾ ∑ 𝑠𝑖𝑧𝑒
24 𝑛𝑔𝑟𝑝 ← 𝑏𝑔𝑟𝑝.𝑖𝑛𝑣𝑒𝑟𝑡𝑘𝑣() // key-value inversion

25 𝑛𝑣𝑎𝑙 ← ∑𝑎∈𝐴 𝑛(𝑑(𝑝(𝑎), 𝑏𝑎𝑟𝑦(𝑛𝑔𝑟𝑝.𝑔𝑟𝑜𝑢𝑝(𝑎)))) × 𝑣(#𝑛𝑔𝑟𝑝.𝑔𝑟𝑜𝑢𝑝(𝑎))
26 until 𝑛𝑣𝑎𝑙 ⩽ 𝑣𝑎𝑙
27 return 𝑔𝑟𝑝
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(a) AUCCCR-C (b) AUCCCR-CA

(c) k-means (d) OPTICS

Figure 26: Clusters found in Wholesale@45

(a) AUCCCR-C (b) AUCCCR-CA

(c) k-means (d) OPTICS

Figure 27: Clusters found in Wholesale@45
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(a) AUCCCR-C (b) AUCCCR-CA

(c) k-means (d) OPTICS

Figure 28: Clusters found in Wholesale@45 (Manifold MDS)

(a) AUCCCR-C (b) AUCCCR-CA

(c) k-means (d) OPTICS

Figure 29: Clusters found in Wholesale@45 (Manifold MDS)
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Figure 30: Metrics for various mini-batches numbers and different algorithms
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Figure 31: Clusters found by AUCCCR-C in MNIST for various numbers of mini-batches
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(a) AUCCCR-C (b) AUCCCR-CA

(c) k-means (d) OPTICS

Figure 32: Clusters found by various algorithms in VSN
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Figure 33: Clustering + federated ML in VSN
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