General pairwise Markov chains for unsupervised image segmentation - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2021

General pairwise Markov chains for unsupervised image segmentation

Résumé

Probabilistic graphical models are popular tools in statistical signal processing. The dependencies between the random variables described by such models enable to model a large class of statistical problems. Among probabilistic graphical models, Hidden Markov models and their extensions, Pairwise Markov models, are latent variable models which have found applications in image segmentation. In this paper, we address this problem by introducing a new class of Pairwise Markov models whose parametrization allows the use of (deep) neural networks architectures, for example. We focus on the unsupervised parameters estimation in these general models and we show that the combination of our general framework with (deep) neural architectures outperforms classical Pairwise Markov models for the task of unsupervised image segmentation.
Fichier principal
Vignette du fichier
General_PMC.pdf (252.23 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03181237 , version 1 (25-03-2021)
hal-03181237 , version 2 (16-06-2021)

Identifiants

  • HAL Id : hal-03181237 , version 1

Citer

Hugo Gangloff, Katherine Morales, Yohan Petetin. General pairwise Markov chains for unsupervised image segmentation. 2021. ⟨hal-03181237v1⟩
178 Consultations
206 Téléchargements

Partager

More