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ABSTRACT

Probabilistic graphical models are popular tools in statistical
signal processing. The dependencies between the random
variables described by such models enable to model a large
class of statistical problems. Among probabilistic graphical
models, Hidden Markov models and their extensions, Pair-
wise Markov models, are latent variable models which have
found applications in image segmentation. In this paper, we
address this problem by introducing a new class of Pairwise
Markov models whose parametrization allows the use of
(deep) neural networks architectures, for example. We focus
on the unsupervised parameters estimation in these general
models and we show that the combination of our general
framework with (deep) neural architectures outperforms clas-
sical Pairwise Markov models for the task of unsupervised
image segmentation.

Index Terms— Pairwise Markov Chains, Image Segmen-
tation, Deep Neural Networks, Expectation-Maximization.

1. INTRODUCTION

Let XXX = (X1, · · · , Xk) (resp. HHH = (H1, · · · , Hk)) a se-
quence of observed (resp. hidden) random variables (r.v.),
where Xk ∈ R and Hk ∈ Ω = {ω1, · · · , ωC}, for all k,
1 ≤ k ≤ K. The joint distribution of (HHH,XXX) is denoted
p(hhh,xxx). In this paper, we focus on the Bayesian estimation of
Hk fromXXX , for all k, 1 ≤ k ≤ K. Bayesian image segmenta-
tion is an critical application of this problem. In this context,
the hidden r.v. Hk is associated to the class of a given pixel of
an image, while the observed r.v. Xk represents the noisy ob-
servation of this pixel. Dealing with this application requires
a relevant probabilistic model pθθθ(hhh,xxx) in which it is possible
to compute or to approximate the marginal smoothing distri-
bution pθθθ(hk|xxx), for all k, 1 ≤ k ≤ K, when θθθ is known.

Hidden Markov Chains (HMCs) define an important fam-
ily of probabilistic graphical models and have been the sub-
ject of many investigations for the Bayesian image segmen-
tation application [?]. Roughly speaking, in an HMC, HHH is
Markovian and givenHHH , the observationsXXX are independent
and only depend on the equivalent hidden r.v. These mod-
els have been generalized by the introduction of the Pairwise
Markov Chains (PMCs) [1] which relax the three assumptions
above while keeping the interesting computational properties

of HMCs. These models have also received a particular atten-
tion for image segmentation, see e.g. [2, 3, 4]

By contrast, artificial Deep Neural Networks (DNNs) do
not model the observations with a probabilistic model but
have gained in popularity due to their excellent performances
in many tasks, such as classification. Indeed, a DNN can
be seen as an universal approximator fθθθ(xxx) of a function
f(xxx) [5]. The parameter θθθ is estimated in a supervised way
by the backpropagation algorithm which requires a labeled
training dataset [6]. These architectures have been recently
combined with probabilistic graphical models in order to pro-
vide powerful generative models [7, 8] which aim at modeling
the unknown distribution p(xxx) of these observations.

Let us turn now to the contributions of this paper. We
first remark that unsupervised image segmentation via PMCs
models [9, 2] has been done for a particular subclass of PMCs.
These models satisfy a stationary assumption and rely on an
implicit parametric Markovian transition distribution which
may be difficult to tune. In this paper, we first relax these
underlying assumptions and propose a general framework for
image segmentation with PMCs. This general framework en-
ables us to robustify PMCs by parametrizing the key distribu-
tions with universal approximators based on DNNs. Next, as
opposed to deep generative models which particularly focus
on the distribution p(xxx) via continuous latent variables [10],
we propose an efficient unsupervised parameter estimation
procedure which aims at taking into account that Hk is as-
sociated to the class of pixel k and thus to reconstruct the
image from noisy observations. As shown in simulations, this
procedure illustrates the great potential of Deep PMCs for un-
supervised image segmentation.

The rest of the paper is organized as follows. Section 2
reviews Markovian probabilistic models and introduces our
general PMC models for image segmentation. In Section 3,
we explain how to estimate the parameters of our models in
an unsupervised fashion, and how to estimate the discrete la-
tent process from the observations. Finally, Section 4 pro-
vides some simulations in which our models are compared
with classical probabilistic models.

2. PROBABILISTIC MODELS

In this section, we first review the PMC framework and its
application for image segmentation.



2.1. PMC models

As recalled in Introduction, a PMC is a probabilistic model
where the pair (Hk, Xk) is Markovian. So, the joint distribu-
tion of (HHH,XXX) reads

p(hhh,xxx) = p(h1, x1)

K∏
k=2

p(hk, xk|hk−1, xk−1), (1)

where the Markovian transition distribution can be factorized
as

p(hk, xk|hk−1, xk−1) = p(hk|hk−1, xk−1)×
p(xk|hk, hk−1, xk−1). (2)

Factorization (2) is the most general in terms of direct depen-
dencies that can be modeled by a PMC. From now on, we will
refer to this model as PMC with Correlated Noise 2 (PMC-
CN2) and its graphical representation is given in Fig. 1e.

From (2), several submodels can be derived. We list
them by decreasing order of complexity. The PMC-CN1 (see
Fig. 1d) is a model where we have

p(hk,xk|hk−1, xk−1)=p(hk|hk−1, xk−1)p(xk|hk, xk−1). (3)

In the next three following models, HHH becomes Markovian,
whence the terminology. The factorization associated to the
HMC-CN model (see Fig. 1c) reads

p(hk, xk|hk−1, xk−1) = p(hk|hk−1)p(xk|hk, xk−1). (4)

In the HMC with Independent Noise 2 (HMC-IN2) (Fig. 1b)
model we have

p(hk, xk|hk−1, xk−1) = p(hk|hk−1, xk−1)p(xk|hk). (5)

Note that this model coincides with the probabilistic Recur-
rent Neural Networks defined in [11]. Finally, the HMC-IN
(Fig. 1a) coincides with the classical HMC,

p(hk, xk|hk−1, xk−1) = p(hk|hk−1)p(xk|hk). (6)

2.2. PMC for image segmentation

In [1], the image segmentation issue has been treated for the
particular class of stationnary PMC models. These models
rely on the constraint that p(hk−1, xk−1, hk, xk) do not de-
pend on k and are thus characterized by the distributions

p(hk−1, hk)p(xk−1, xk|hk−1, hk) = p(hk−1, xk−1, hk, xk).

Next, the particular stationary Gaussian PMC has been inves-
tigated: p(xk−1, xk|hk−1 = ωi, hk = ωj) is a bi-variate
Gaussian whose parameters depend on (ωi, ωj), for all
(ωi, ωj) ∈ Ω2. While these models have achieved good

(a) HMC-IN (b) HMC-IN2 (c) HMC-CN

(d) PMC-CN1 (e) PMC-CN2

Fig. 1: Graphical representations of the directed probabilistic
graphical models of the study. The transitions can themselves
be parametrized by a DNN (see Section 3), leading to the deep
models. White circles represent a hidden random variable and
gray squares represent an observed random variable.

results in practice, the stationary assumption tends to restrict
the modeling power of the general PMC (2). First, it con-
straints the parameters of the model since p(hk−1 = ωi) has
to be equal to p(hk = ωi), for all k, for example; next, if
we take the bi-variate Gaussian case, it necessarily implies
that the distribution of Xk given xk−1, hk−1 and hk is a
Gaussian whose mean is a linear function of xk−1. Finally,
the estimation of the parameters of stationary PMCs has to be
approximated, even in simple cases [1].

We now show that these assumptions can be relaxed via
the introduction of parametric functions in the transition dis-
tribution (2).

3. DEEP PMCS

3.1. The general model

Let fθθθ,h(hk−1, xk−1) and fθθθ,x(hk, hk−1, xk−1) be functions
parametrized by an unknown parameter θθθ. We assume that
these functions are differentiable w.r.t. θθθ. We parametrize the
PMC in (2) via these two functions,

pθθθ(hk|hk−1, xk−1) = λh(hk; fθθθ,h(hk−1, xk−1)), (7)
pθθθ(xk|hk, hk−1, x−1) = λx(xk; fθθθ,x(hk, hk−1, xk−1)), (8)

where λh(h; z) (resp. λx(x; z′)) is a probability distribution
(resp. a probability density function) on Ω (resp. on R) w.r.t.
h (resp. x) which depends on z (resp. z′) and which is differ-
entiable as a function of z (resp. z′).

As an illustrative example, let us consider the case where
Ω = {ω1, ω2} and a model where

fθθθ,h(hk−1, xk−1) = ahk−1
xk−1 + bhk−1

, (9)
fθθθ,x(hk, hk−1, xk−1) =

[
chk,hk−1

xk−1+dhk,hk−1
σhk,hk−1

]
,(10)

λh(h = ω1; z) = sigm(z) =
1

1 + exp(−z)
, (11)

λx(x; z′ = (z′1, z
′
2)) = N (x; z′1; (z′2)2), (12)



where N (x;µ;σ2) is the Gaussian distribution with mean µ,
variance σ2 taken at point x. Here,

θθθ = (aωi
, bωi

, cωj ,ωi
, dωj ,ωi

, σωj ,ωi
),

for all (i, j) ∈ {0, 1}2.
It can be shown that the transition distribution of the re-

sulting PMC in (7)-(8) and parametrized by (9)-(12) is close
to that of the bi-variate Gaussian stationary PMC model of
Section 2.2, except that it does not rely on a stationarity as-
sumption [1].

This very general formulation of PMC models enables
us to model more complex dependencies through the func-
tions fθθθ,h(hk−1, xk−1) and fθθθ,x(hk, hk−1, xk−1). In particu-
lar, these functions can be represented by DNNs which have
the capacity to approximate complex functions. In this case,
the set of parameters θθθ includes the weights and the biases of
these architectures [12].

From now on, we will refer to the general class of PMC
models (7)-(8) as Deep PMC models (denoted DPMC mod-
els). Let us now derive the Bayesian inference tools related to
these PMCs.

3.2. Bayesian restoration in Deep PMCs

Since our Deep PMC models are particular PMC models,
the general restoration formulae derived in [1] and which ex-
tend the Forward-Backward algorithm [13] are still valid here.
We just need to redefine αk(hk) = pθθθ(x1, · · · , xk, hk) and
βk(hk) = pθθθ(xk+1, · · · , xk|hk, xk), and we have for all k,
1 ≤ k ≤ K,

αk(hk) =
∑
hk−1

αk−1(hk−1)pθθθ(hk, xk|hk−1, xk−1), (13)

βk(hk) =
∑
hk+1

pθθθ(hk+1, xt+1|hk, xk)βk+1(hk+1). (14)

3.3. Unsupervised estimation of Deep PMCs

We need to estimate the parameter θθθ of fθθθ,h and fθθθ,x in (7)-(8)
from an observation XXX = xxx. Unlike [1], we now use a max-
imum likelihood estimation approach via the Expectation-
Maximisation (EM) algorithm [14]. For a fixed θθθ(j), the
quantity Q(θθθ,θθθ(j)) = Eθθθ(j)(log(pθθθ(hhh,xxx))|xxx) becomes

Q(θθθ,θθθ(j)) =

K∑
k=2

∑
hk:k+1

pθθθ(j)(hk, hk+1|xxx)×

(log(pθθθ(hk+1|hk, xk))+log(pθθθ(xk+1|hk+1, hk, xk))) , (15)

up to the initial distribution of the PMC, and where pθθθ(j)(hk,
hk+1|xxx) ∝ αk(hk)βk+1(hk+1) pθθθ(j)(hk+1, xk+1|hk, xk).

It remains to maximize Q(θθθ,θθθ(j)). In general PMC mod-
els, computing arg maxθθθ Q(θθθ,θθθ(j)) is impossible, even if we
replace Q(θθθ,θθθ(j)) by its stochastic approximation [SEM].
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Fig. 2: Error rate in unsupervised segmentations. Section 4.1
(resp. Section 4.2) illustrated on the left (resp. right) graph.
Only relative performances are comparable.

When the exact maximization is not possible, we use the
Gradient EM (GEM) algorithm [15] to get a set of param-
eters θθθ(j+1) which increases the likelihood. Since λh(h; z)
and λx(x; z′) are differentiable functions of z and z′, and
since fθθθ,h and fθθθ,x are also differentiable as function of θθθ,
pθθθ(hk+1|hk, xk) and pθθθ(xk+1|hk+1, hk, xk) are differen-
tiable w.r.t. θθθ and so is Q(θθθ,θθθ(j)). Finally, introducing a
learning rate ε, and according to [15], θθθ(j) is updated as

θθθ(j+1) = θθθ(j) + ε∇θθθQ(θθθ,θθθ(j))
∣∣∣
θθθ=θθθ(j)

, (16)

4. EXPERIMENTS AND RESULTS

In this section, we provide experiments that illustrate the gen-
eralization offered by Deep PMC models, and we show that
they lead to improved error rates in the task of unsupervised
signal segmentation. All the following experiments study un-
supervised binary image segmentation (Ω = {ω1, ω2}) under
the Maximum Posterior Mode criterion (MPM) [16]. When
dealing with images, we work with natural images from the
Binary Shape Database1.

For all PMCs (7)-(8), we will use the probability distribu-
tions λh(h = ω1; z) and the probability distribution function
λx(x; z′ = (z′1, z

′
2)) defined in our illustrative example, see

(11)-(12). When non deep architectures (resp. deep architec-
tures) are considered, fθθθ,x and fθθθ,h are defined from (9)-(10)
(resp. from a DNN).

When DNNs are involved, ∇θθθfθθθ,x and ∇θθθfθθθ,h are com-
puted via the backpropagation algorithm [17] for the update
rule (16). In practice, convergence issues may be encoun-
tered when we try to maximize the loglikelihood pθθθ(xxx) with
randomly initialized parameters. To deal with this issue, we
propose a pretraining step. In our case, the parameters of fθθθ,x
and fθθθ,h are initialized with some iterations of a backpropaga-
tion algorithm which uses xxx as inputs and the latent variables

1http://vision.lems.brown.edu/content/
available-software-and-databases



estimated by an easily available segmentation (such as the re-
sult of the k-means algorithm [18], or a less general model) as
output. The cost function of the backpropagation procedure
is chosen as the mean square error, (resp. cross-entropy), for
the DNN related to fθθθ,x (resp. fθθθ,h).

Finally, we use a Hilbert-Peano filling curve [19] to trans-
form the images into a unidimensional data structure [20, 21].

4.1. Segmentations of linear and correlated noise

This experiment consists of the binary shapes artificially cor-
rupted with a 0-mean, additive and correlated Gaussian noise
taken as the realization of a Gaussian Markov Random Fields
(GMRF) with an exponential correlation function [22]. Such
a noise is then parametrized by a correlation range r (that we
fix to 3) and a noise variance σ2. The DNNs for the Deep
model are set to one hidden layer with 10 neurons. Note that
we also give, for comparison purposes, the results of the K-
means algorithm.

Fig. 2a illustrates the experiment. The results are averaged
on all the ’dude’ images of the database. We can see that
the deep model performs equivalently for all the noise levels,
which should not be surprising since we can show that this
kind of noise introduces a Gaussian linear relation between
the observations. So it shows that our general PMC model is
able to adapt to the linear case.

4.2. Segmentations of non-linear and correlated noise

In this section we propose to blur 1-D signals with a complex
noise which exhibits non-linearities to highlight the ability of
the generalized models to learn such a signal corruption. The
hidden signal is taken as the realization of a two states Markov
chain with symmetric transition matrix with a switching prob-
ability is fixed to 0.2. Then each observation is simulated as

xk∼N
(
ahk

+cos(xk−1);(chk
+1{xk−1<0}[hk−1⊕hk]bhk

)2
)
,

where ⊕ denotes the logical XOR operator. Such a noise is
correlated and has the property that when transitioning from
an hidden state to an other, the noise distributions changes if
xk−1 < 0. Set ∆µ = |aω1−aω2 |, cω1 = cω2 = 0.2 and bω1 =
bω2

= 0.6. All these parameters are then considered lost to
meet the case of unsupervised segmentation. The DNNs for
the Deep model are set to one hidden layer with 2 neurons.

Fig. 2b illustrates the error rate with the k-means, HMC-
IN, PMC-CN2 and DPMC-CN2 models (other models are
discarded for brevity of the presentation) for a varying ∆µ,
the latter affects the noise level. It is clear that the general
model performs always better or equivalently, whatever the
noise model, with up to a 4%-point improvement. This fact
agrees with the theory we introduced earlier where DPMC-
CN2 stands out as the most general model. From a signal
processing point of view, the gain in the error rate obtained
with our general model tends to show that it is now able to

0 10 20 30 40 50 60

0.00

0.05

0.10

0.15

0.20

Number of neurons in each layer

E
rr

or
ra

te
(M

PM
) PMC-CN1

DPMC-CN1:
0 hidden layer
1 hidden layer
2 hidden layers

Fig. 3: Error rate of the DPMC-CN1 model as a function of
the NN architectures. Note that in this graph, HMC-IN mean
error rate is a constant equal to 43.9%. The results are aver-
aged on all the ’camel’ images of the database.

learn such non-linear noise and is available without any fur-
ther modeling effort.

4.3. DNN architectures experiment

We finally turn back again to image segmentation and we pro-
pose to blur images with a causal correlated and non-linear
noise defined by

xk ∼ N
(
ahk

xk−1 + bhk
+ cos(xk−1); (chk

+ cos(xk−1))2
)
.

We set aω1 = 0.2, aω2 = 0.5, cω1 = 0.2, cω2 = 0.3 and
bω1 = 0.2, bω2 = 0.6. Again, these parameters are considered
lost, because we simulate the case of unsupervised segmenta-
tion. In this experiment we study the variation of the error
rate with the DPMC-CN2 model when its DNN architectures
evolve. The same number of hidden layers and of neurons are
used for parametrizing (7)-(8)

Fig. 3 shows that we can decrease the error by using a
more complex DNN architecture. It is notable that the seg-
mentation can be greatly improved without any more model-
ing effort (the price to pay is purely computational). Also,
notice that DPMC-CN1 performs better than PMC-CN1 even
without hidden layers. It may seem counter intuitive because
both model are equivalent, but it actually highlights the inter-
est of our proposed unsupervised pretraining by backpropa-
gation as a way to initialize the gradient EM procedures.

5. CONCLUSION

In this paper, we have introduced a deep probabilistic archi-
tecture based on PMC models and on DNNs adapted to the
unsupervised image segmentation problem. For this general
deep probabilistic model, we have proposed a parameter es-
timation procedure and tuned it in order to outperform clas-
sical probabilistic models for image segmentation. Our ex-
periments have indeed shown that substantial gains can be at-
tained over the classical models.

In a future work, we might consider studying similar gen-
eralizing approaches in the context of Triplet Markov Mod-
els [23], by introducing a third random process to complexify
the distribution of the noise, for example.
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