Homogeneous actions on Urysohn spaces - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2021

Homogeneous actions on Urysohn spaces

Résumé

We show that many countable groups acting on trees, including free products of infinite countable groups and surface groups, are isomorphic to dense subgroups of isometry groups of bounded Urysohn spaces. This extends previous results of the first and last author with Y. Stalder on dense subgroups of the automorphism group of the random graph. In the unbounded case, we also show that every free product of infinite countable groups arises as a dense subgroup of the isometry group of the rational Urysohn space.
Fichier principal
Vignette du fichier
UryshonSpaceAmalgamatedFreeProd.pdf (463.97 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03178570 , version 1 (23-03-2021)

Identifiants

Citer

Pierre Fima, François Le Maître, Julien Melleray, Soyoung Moon. Homogeneous actions on Urysohn spaces. 2021. ⟨hal-03178570⟩
76 Consultations
100 Téléchargements

Altmetric

Partager

More