Evaluating DAS3H on the EdNet Dataset - Archive ouverte HAL Access content directly
Conference Papers Year : 2021

Evaluating DAS3H on the EdNet Dataset

Jill-Jênn Vie
  • Function : Author
  • PersonId : 1094083

Abstract

The EdNet dataset is a massive English language dataset that poses unique challenges for student performance prediction. In this paper, we describe and comment the results of our award-winning model DAS3H in the context of knowledge tracing in EdNet.
Fichier principal
Vignette du fichier
DAS3H_AAAI_2021_Workshop_on_AIED_HAL.pdf (194.14 Ko) Télécharger le fichier
Origin : Explicit agreement for this submission

Dates and versions

hal-03175874 , version 1 (23-03-2021)

Identifiers

  • HAL Id : hal-03175874 , version 1

Cite

Benoît Choffin, Fabrice Popineau, Yolaine Bourda, Jill-Jênn Vie. Evaluating DAS3H on the EdNet Dataset. AAAI 2021 - The 35th Conference on Artificial Intelligence / Imagining Post-COVID Education with AI, Feb 2021, Virtual, United States. ⟨hal-03175874⟩
200 View
257 Download

Share

Gmail Facebook Twitter LinkedIn More