Orlicz norms and concentration inequalities for β-heavy tailed random variables - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2021

Orlicz norms and concentration inequalities for β-heavy tailed random variables

Résumé

We establish a new concentration-of-measure inequality for the sum of independent random variables with β- heavy tail. This includes exponential of Gaussian distributions (a.k.a. log-normal distributions), or exponential of Weibull distributions, among others. These distributions have finite polynomial moments at any order but may not have finite α-exponential moments. We exhibit a Orlicz norm adapted to this setting of β-heavy tails, we prove a new Talagrand inequality for the sum and a new maximal inequality. As consequence, a bound on the deviation probability of the sum from its mean is obtained, as well as a bound on uniform deviation probability.
Fichier principal
Vignette du fichier
Orlicz_beta_heavy_tail_versionHAL_v3.pdf (366.91 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03175697 , version 1 (20-03-2021)
hal-03175697 , version 2 (21-04-2021)
hal-03175697 , version 3 (30-06-2021)

Identifiants

  • HAL Id : hal-03175697 , version 3

Citer

Linda Chamakh, Emmanuel Gobet, Wenjun Liu. Orlicz norms and concentration inequalities for β-heavy tailed random variables. 2021. ⟨hal-03175697v3⟩
422 Consultations
1444 Téléchargements

Partager

More