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We establish a new concentration-of-measure inequality for the sum of independent random variables with β-
heavy tail. This includes exponential of Gaussian distributions (a.k.a. log-normal distributions), or exponential of
Weibull distributions, among others. These distributions have finite polynomial moments at any order but may not
have finite α-exponential moments. We exhibit a Orlicz norm adapted to this setting of β-heavy tails, we prove a
new Talagrand inequality for the sum and a new maximal inequality. As consequence, a bound on the deviation
probability of the sum from its mean is obtained, as well as a bound on uniform deviation probability.

MSC2020 subject classifications: Primary 60E15; secondary 60F10
Keywords: heavy tails; deviation inequality; Orlicz norm; Talagrand inequality; maximal inequality; empirical
process

1. Introduction

1.1. Concentration inequalities

Understanding how sample statistical fluctuations impact prediction errors is crucial in learning al-
gorithms. Typically, we are interested in bounding the probability that a sum of random variables
exceeds a certain threshold, essentially in quantifying the deviation of the sum from its expecta-
tion. In other words, we aim at analyzing how fast the sum concentrates around its expectation.
Take the notation [M ] for all integers from 1 to M included. For independent and centered random
variables (Ym)m∈[M ] taking value in a Banach space (B,‖.‖B), the quantity of interest takes the

form P
(∥∥∥∑m∈[M ] Ym

∥∥∥
B
> ε
)
≤ f(ε,M) for the most explicit and tightest possible function f . The

bounded, sub-Gaussian or the sub-exponential random variables have been largely covered by the lit-
erature (for example, via Bennett and Bernstein inequalities - see [BLM13] for an extensive review
of main concentration inequalities techniques), as well as the case of alpha-exponential tails [CGS20]
(random variables Y s.t. there exists α> 0, c > 0, such that E

[
exp(

‖Y ‖αB
c )

]
<∞). The fat-tailed case,

for which the moment generating function does not exist but some polynomial moments exist, can be
tackled for example via Burkholder or Fuk-Nagaev type of inequalities [Rio17, Mar17]. These inequal-
ities are based on the existence and on the bounding of polynomial moments of the random variables. In
this work, we focus on the heavy-tailed random variables case, in the limit case when no α-exponential
moment is finite but every polynomial moment exist.
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1.2. Orlicz norm

Orlicz norm [KR61] provides a nice tool to study the statistical fluctuations of an estimator for a given
family of distributions. Consider an Orlicz function Ψ : R+→R+, that is a continuous non-decreasing
function, vanishing in zero and with limx→+∞Ψ(x) = +∞, and define the Ψ-Orlicz norm of the B-
valued random variable Y by

‖Y ‖Ψ := inf

{
c > 0 : E

[
Ψ

(
‖Y ‖B
c

)]
≤ 1

}
. (1.1)

With the additional property that Ψ is convex, Orlicz functions are commonly referred to as "Young
functions" (or "N-functions" as in [KR61]). Van de Geer and Lederer [vdGL13] exhibit in their
work a "Bernstein-Orlicz" norm (the "(L)-Bernstein-Orlicz" norm) adapted to sub-Gaussian and sub-
exponential tails and provide deviation inequalities for suprema of functions of random variables
[vdGL13, Theorem 8]. The (L)-Bernstein-Orlicz norm is the ΨL-Orlicz norm with

ΨL(z) = exp

[√
1 + 2Lz − 1

L

]2

− 1.

Clearly ‖Y ‖ΨL <∞ implies the existence of exponential moment. As shown in Wellner [Wel17], it is
possible to generalize these results to any Orlicz function Ψ(x) = eh(x) − 1 with h convex. It requires
again the existence of exponential moment which is not our framework. We would like to go beyond
and do not assume any α-exponential moment.

As a new Orlicz function able to handle heavy-tail situations, we will consider:

ΨHT
β (x) := exp((ln (x+ 1))β)− 1, x≥ 0, (1.2)

for a parameter β > 1. We say that Y is β-heavy tailed if there exists a c > 0 s.t.

E
[
ΨHT
β

(
‖Y ‖B
c

)]
<∞.

Typically, we aim at encompassing situations like Y = exp(|G|
2
β ) where G is a Gaussian random

variable; the case β = 2 corresponds to log-normal tails. See Section 2.2 for various examples.
Observe that when (1.1) is finite with Ψ = ΨHT

β , Y has finite polynomial moment of order p for any
p > 0, but may not have α-exponential moments. Besides, our β-heavy tailed setting is closely related
to long-tail modelling1, which is used for instance in queuing applications [Asm03, Chapter 10].

1.3. Deviation inequalities for sum via Talagrand and Markov inequalities

What we call Talagrand inequality is an inequality of type:

∥∥∥ ∑
m∈[M ]

Ym

∥∥∥
Ψ
≤CΨ

(∥∥∥ ∑
m∈[M ]

Ym

∥∥∥
L1(B)

+
∥∥∥ max
m∈[M ]

‖Ym‖B
∥∥∥

Ψ

)
. (1.3)

1typically S(x) := P
(
‖Y ‖B > x

)
= exp(−(ln(1 + x))β) for which limx→+∞ S(x+ t)/S(x) = 1 for any t > 0.
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Talagrand [Tal89, Theorem 3] showed that this inequality is satisfied with Ψα(x) := ex
α − 1

(α ∈ (0,1]). For the sake of presentation, let us consider i.i.d. (Ym)m∈[M ]. The first term is then∥∥∥∑m∈[M ] Ym

∥∥∥
L1(B)

≤O(
√
M) by Bukholder inequality whenB ⊆R or the more general inequality

of [Pis16, Proposition 4.35] when B is a Hilbert space or a Banach space of type 2.
When the maximal inequality is satisfied, that is under the form of [vdVW96, Lemma 2.2.2.], the

second term is bounded by∥∥∥ max
m∈[M ]

‖Ym‖B
∥∥∥

Ψ
≤KΨΨ−1 (M) max

m∈[M ]
‖Ym‖Ψ .

Hence, for any ε > 0, denoting X := 1
M

∥∥∥∑m∈[M ] Ym

∥∥∥
B

, thanks to the Markov inequality, the Tala-
grand inequality and the two previous norm controls, we get

P (X ≥ ε) ≤
Sect. 2.1−(iii)

2

1 + Ψ (ε/‖X‖Ψ)
= 2

1 + Ψ

 εM∥∥∥∑m∈[M ] Ym

∥∥∥
Ψ

−1

(1.4)

≤ 2

(
1 + Ψ

(
εM

C ′Ψ(Ψ−1(M) +
√
M)

))−1

. (1.5)

In particular, for Ψ = Ψα, the above inequality simplifies to:

P (X ≥ ε)≤ 2 exp
(
−C ′α

(
ε
√
M
)α)

.

It is then possible to extend this type of inequality to suprema of functions as done in [CGS20], in the
spirit of [Ada08]. In any case, a key element to derive these concentration inequalities is the Talagrand
inequality (1.3).

1.4. Our contribution

The purpose of this work is mainly to establish the Talagrand inequality for Ψ = ΨHT
β , to tackle β-

heavy tailed random variables as a difference with previous contributions available in the literature,
and to derive some ready-to-use consequences. Note that this particular Orlicz function (1.2) is not at
all part of the general result established by Talagrand [Tal89, Proposition 12], which states that the
inequality (1.3) holds for Orlicz function of the form Ψ(x) := exζ(x) with ζ non-decreasing for x
large enough and satisfying lim supu→+∞

ζ(eu)
ζ(u)

<+∞; indeed, in our setting, one easily checks that

ζ(x) = x−1 ln(ΨHT
β (x)) = x−1(ln(exp((ln(x+ 1))β)− 1)) is decreasing for x large.

1.5. Outline

In Section 2, we recall the motivating example and define the adapted Orlicz function. Then we state our
main results: Talagrand inequality (Theorem 2.1), maximal inequality (Theorem 2.2), pointwise and
uniform deviation estimates (Corollary 2.3 and Theorem 2.4). Derivations of finite-sample confidence
intervals and of excess risk bounds [Kol11] in regression are given, as direct applications of our results.
Section 3 is devoted to the proofs. In all these results, some universal constants appear: we do not
investigate the question of having the best possible constants.
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2. Motivating examples and main results

2.1. Orlicz norm properties

Although ‖.‖Ψ defined in (1.1) may not satisfy in general the triangle inequality, we keep calling it
Orlicz norm for the sake of simplicity. For a given Banach space (B,‖.‖B) over the field R, we denote
LΨ(B) := {Y : Ω→B s.t. ‖Y ‖Ψ <+∞} the set of B-valued random variables with finite Ψ-Orlicz
norm. For self-containedness we summarize a few well-known properties of the ‖·‖Ψ norm, for a
given Orlicz function Ψ, which hold independently of the convexity of Ψ (unless explicitly required).
See [KR61], or more recently [CGS20, Section 4].

(i) Normalization: If Y ∈ LΨ(B) then E
[
Ψ
(
‖Y ‖B
‖Y ‖Ψ

)]
≤ 1.

(ii) Homogeneity: If Y ∈ LΨ(B) and c ∈R then cY ∈ LΨ(B) and ‖cY ‖Ψ = |c| ‖Y ‖Ψ.
(iii) Deviation inequality: If Y ∈ LΨ(B) then P (‖Y ‖B ≥ c)≤

2
Ψ(c/‖Y ‖Ψ)+1

for any c≥ 0.

(iv) If Ψ is convex, ‖.‖Ψ satisfies to the triangle inequality.

2.2. Motivating examples of heavy-tailed distributions and adapted Orlicz norm

2.2.1. Log-normal distribution

Let Y be a scalar random variable with log-normal distribution, i.e.

ln(Y )
d
=N

(
µ,σ2

)
,

with σ > 0. The distribution of Y admits the density

fY (y;µ,σ) :=
1

σ
√

2πy
e
− (lny−µ)2

2σ2 1y>0.

Let us investigate what kind of Orlicz function Ψ can be used to have ‖Y ‖Ψ <∞. In particular, we
search for Ψ(x) = exp(ξ(x))− 1 such that ξ is non-decreasing, ξ(0) = 0 and limx→+∞ ξ(x) = +∞
in order to ensure that Ψ(0) = 0 and limx→+∞Ψ(x) = +∞. Let c > 0, observe that

E
[
exp

(∣∣∣∣ξ( |Y |c
)∣∣∣∣)]<∞ =⇒ lim inf

x→∞
ξ
(x
c

)
− (lnx)2

2σ2
=−∞. (2.1)

Consider the following functions for β > 0:

1. ξβ(x) = (ln (x+ 1))β , x ≥ 0. Note that the case β ≤ 1 is not much interesting in our setting
since it quantifies tails with finite expectation at most (fat tail cases).

2. ξβ(x) = (ln(x+ 1))β(ln(ln(x+ 1) + 1))α, x≥ 0, α ∈R. This second case is a scale refinement
of the first case. It is not studied here.

These functions satisfy the necessary condition (2.1) if β < 2 and for a large c 2. Furthermore, since
for any c > 0, ξβ

(
x
c

)
< ε(lnx− µ)2 for any ε > 0 for x large enough, E

[
exp

(∣∣∣ξβ ( |Y |c )∣∣∣)]<+∞.

2β = 2 is possible under restriction on σ: if σ < 1√
2

, then lim infx→∞ ξ2 (x)− (lnx)2

2σ2 =−∞.
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2.2.2. Other distributions satisfying E
[
exp

(
ξβ

(
‖Y ‖B
c

))]
<+∞

The associated Orlicz function ΨHT
β (x) := exp(ξβ(x)) − 1 is adapted to other distributions than just

the log-normal distribution. For any random variable X admitting finite α-exponential moment with
α> 1, then Y defined by ln(Y ) =X will admit β-heavy tailed for any 1< β < α. We refer the reader
to [CGS20, Table 2] for an exhaustive list of distributions admitting α-exponential moments. Here are
a few examples:

• The Generalized normal distribution with parameters c ∈ R, b > 0, α > 0 has a density

f(x) = cfe
− 1

2

(
|x−c|
b

)α
up to a positive normalization constant cf : it clearly admits a finite

α-exponential moment. Hence Y = exp(X) where X has density f hence admits β-heavy tails
for β < α.

• The Skew normal distribution with parameters b ∈ R, c ∈ R, v > 0 has a density f(x) =

cfe
− (x−c)2

2v Φ
(
b(x−c)√

v

)
, where Φ denotes the standard Gaussian cumulative distribution func-

tion and cf is a positive normalization constant: it admits 2-exponential moment. If X has this
density, then Y = exp(X) has β-heavy tails for β < 2.

• The Weibull distribution with parameters λ > 0, k > 0 has a density f(x) = cfx
k−1e−( xλ )

k

1x≥0

up to a positive normalization constant cf : it has finite k-exponential moment. Consequently,
Y = exp(X) where X has the density as above, admits β-heavy tails for β < k. Such distribu-
tions are used, for instance, for earthquake magnitude modelling [HR99] .

2.3. ΨHT
β -Orlicz norm: properties and inequalities

We state different properties of the Orlicz function to be used for β-heavy tailed distribution. The proof
is postponed to Section 3.4.

Proposition 2.1. For β > 0 define ΨHT
β : R+→R+ by

ΨHT
β (x) := exp(ξβ(x))− 1 with ξβ(x) := (ln (1 + x))β , x≥ 0. (2.2)

The following properties hold:

1. The application β 7→ΨHT
β defines a group isomorphism between ((0,+∞),×) and ((ΨHT

β : β >

0),◦), and in particular, (ΨHT
β )−1 = ΨHT

1/β .

2. For β > 0, ΨHT
β is an Orlicz function.

3. For β > 1, ΨHT
β is convex.

4. For β > 1 (resp. β < 1), the limit as x→ +∞ of ΨHT
β (x)/xk equals to +∞ (resp. 0), for any

k > 0.

As a consequence, the associated ΨHT
β -Orlicz norm satisfies to the triangle inequality for β > 1.

Hereafter, we mostly restrict the results to the more interesting case β > 1. Let us start with the
Talagrand inequality (1.3) for the ΨHT

β -Orlicz norm.

Theorem 2.1 (Talagrand type inequality). Let β ∈ (1,+∞). Then there is a universal constant
Kβ,(2.3) s.t. for all independent, mean zero, random variables sequence (Ym)m∈[M ] with Ym ∈
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LΨHT
β

(B) for all m ∈ [M ], we have

∥∥∥∥∥∥
∑

m∈[M ]

Ym

∥∥∥∥∥∥
ΨHT
β

≤Kβ,(2.3)


∥∥∥∥∥∥
∑

m∈[M ]

Ym

∥∥∥∥∥∥
L1(B)

+

∥∥∥∥ max
m∈[M ]

‖Ym‖B

∥∥∥∥
ΨHT
β

 . (2.3)

We also establish that the general maximal inequality [vdVW96, Lemma 2.2.2.] (recalled in Lemma
3.6) holds for the ΨHT

β function:

Theorem 2.2 (A ΨHT
β maximal inequality). Let β ∈ (1,+∞). Then there exists a universal constant

Cβ,(2.4) s.t. for any random variables Y1, . . . , YM in LΨHT
β

(B),∥∥∥∥ max
m∈[M ]

‖Ym‖B

∥∥∥∥
ΨHT
β

≤ Cβ,(2.4)(Ψ
HT
β )−1(M) max

m∈[M ]
‖Ym‖ΨHT

β
. (2.4)

Recall that (ΨHT
β )−1(M) = ΨHT

1/β(M). As a consequence of the Talagrand inequality (2.3) and the
maximal inequality (2.4), by following the same steps as described in (1.5), we can derive the following
concentration inequality:

Corollary 2.3 (A concentration inequality for sum of independent β-heavy tailed random variables).
Let β ∈ (1,+∞). Assume that B is an Hilbert space or a Banach space of type 2. Then for any
Y1, . . . , YM independent and centered random variables in LΨHT

β
(B), for any ε > 0,

P

 1

M

∥∥∥∥∥∥
∑

m∈[M ]

Ym

∥∥∥∥∥∥
B

≥ ε



≤ 2 exp

−
ln

1 +
εM

Kβ,(2.3)

(
C(2)1/2µ2

√
M + Cβ,(2.4)µΨHT

β
ΨHT

1/β
(M)

)
β

 , (2.5)

where µΨHT
β

:= maxm∈[M ] ‖Ym‖ΨHT
β

and µ2 := maxm∈[M ]‖Ym‖L2(B), C(2) denotes the universal
constant in the Pisier inequality [Pis16, Proposition 4.35],Kβ,(2.3) the Talagrand constant in (2.3) and
Cβ,(2.4) the maximal inequality constant in (2.4).

Recall that ΨHT
1/β(M) goes to infinity slowlier than Mk (for β > 1, k > 0) (Proposition 2.1-(4)).

Thus, when Y1, . . . , YM are i.i.d. – implying that µΨHT
β

and µ2 do not depend on M – the above upper
bound takes the simple form

2 exp

(
−
(

ln(1 +Kε
√
M)
)β)

,

for some universal constant K > 0 (depending on µΨHT
β

and µ2).
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One may wonder about the sharpness of the bound (2.5) with respect to M and ε; there is no
reason for which constants in (2.5) are optimal. For M = 1, one retrieves a bound of the form
2 exp

(
− (ln(1 +Kε))β

)
which optimality (w.r.t. ε) is somehow equivalent (up to constant) to that

of the Markov inequality combined with Orlicz norm in the left-hand side inequality (1.4): hence, pos-
sibilities of improvement are quite limited in general. For M > 1, investigating non-sharpness (w.r.t.
ε) would require, for instance, to identify the distribution of

∑
m∈[M ] Ym in some cases and doing so,

showing a large gap between the left and right-hand sides of (2.5); unfortunately, to the best of our
knowledge, we do not know such a situation where the distribution of the sum (under β-heavy tail
conditions) has a tractable expression.

Besides, Corollary 2.3 can potentially be used to construct nonasymptotic confidence intervals
for the mean of f(X) using i.i.d. observations, under the assumption of β heavy-tails. For this, set
Y := f(X)−E [f(X)]. In that case, renormalizing the deviation by

√
M as for asymptotic confidence

intervals based on the central limit theorem (CLT), Corollary 2.3 writes

P

√M
∥∥∥∥∥∥ 1

M

∑
m∈[M ]

f(Xm)−E [f(X)]

∥∥∥∥∥∥
B

≥ ε

≤ 2 exp
(
− (ln(1 +Kε))β

)
,

where K depends explicitly on constants of Corollary 2.3. Had these constants been known, we would
obtain a tractable nonasymptotic confidence intervals. The rate is

√
M as in usual CLT, but the depen-

dence in ε in the tails is different because of the β-heavy tail setting. Alternatively, using CLT-based
confidence intervals would reduce to asymptotic Gaussian bounds, which lighter tails would result in
narrower confidence intervals: the latter might be quite incorrect for finite samples and it highlights the
interest of Corollary 2.3 for deriving nonasymptotic confidence intervals.

In addition, the pointwise estimate from Corollary 2.3 can be turned into a uniform deviation esti-
mate. On the technical side, the strategy consists in splitting the deviation between truncated functions
and their residuals. The residuals are handled using Hoffman-Jorgensen inequality [LT13, Proposi-
tion 6.8], following an initial idea from [Ada08] and the recent analysis of [CGS20]. The "truncated
part" can be handled using Klein-Rio concentration bounds, together with the Dudley entropy inte-
gral bounds. For the latter which is related to the complexity of the space of functions and their re-
lated covering numbers, we choose to describe it using its Vapnik-Chervonenkis (VC) dimension (see
[GKKW02, Theorem 9.4]). For alternative descriptions, see [vdG00, Sections 2.3 and 2.4] and [NP07];
adaptation of the following result to these other complexity descriptions is somehow direct and left to
the reader.

Theorem 2.4 (A uniform concentration inequality for β-heavy tailed random variables). Let β ∈
(1,+∞). Let (X1, . . . ,XM ) be independent random variables taking values in Rd and let F be a
countably-generated class of functions f : Rd 7→ R with envelope F (x) := supf∈F |f(x)|, such that
F (Xm) ∈ LΨHT

β
(R) for any m ∈ [M ] . Set

µΨHT
β

:= max
m∈[M ],f∈F

‖f(Xm)‖ΨHT
β
,

µ̄ΨHT
β

:= max
m∈[M ]

‖F (Xm)‖ΨHT
β
,

µ2 := max
m∈[M ],f∈F

‖f(Xm)‖L2
.

(2.6)
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Assume that the Vapnik-Chervonenkis dimension VF+ ofF+ := {{(x, t) ∈Rd×R, t≤ f(x)};f ∈ F}
is finite. Then, there exist two universal constantsK1,K2 (depending only on β) such that for any ε > 0
satisfying the constraint

ε≥K1c

√
VF+

M
(2.7)

with

c :=
(
K1ΨHT

1/β(M)µ̄ΨHT
β

)
∨
(
µΨHT

β

(
exp

[(
2 ln+

(
K1µΨHT

β
/ε
))1/β

]
− 1

))
, (2.8)

ln+(x) := max(ln(x),0),

we have

P

 sup
f∈F

1

M

∑
m∈[M ]

(f(Xm)−E [f(Xm)])≥ ε



≤ 2 exp

−
ln

1 +
Mε

K2µ̄ΨHT
β

ΨHT
1/β

(M)

β
+ exp

(
− Mε2

K2(µ2
2 + cε)

)
. (2.9)

A similar bound holds for lower deviations, i.e. replacing the sup and ≥ ε by inf and ≤ −ε: it is
obtained by changing F into −F in the bounds.

If F is a finite-dimensional vector space, VF+ ≤ dim(F) + 1 [GKKW02, Theorem 9.5].
For i.i.d. (Xm)m, i.e. the µ-parameters (2.6) do not depend on M , both the condition (2.8) and the

bound (2.9) take simple forms in terms of M (without focusing much on the best constants), which
makes Theorem 2.4 even more easily applicable.

• The bound (2.9) becomes 2 exp

(
−
(

ln(1 + Mε
KΨHT

1/β
(M)

)
)β)

+ exp
(
− Mε2

K(1+cε)

)
for a positive

constant K depending on β and the µ-parameters.
• The equation (2.8) becomes simply

c :=K1ΨHT
1/β(M), (2.10)

with a new constant K1, depending on β and the µ-parameters. Indeed, from the first term
in the definition (2.8) of c, one gets that c ≥ infM≥1

(
K1ΨHT

1/β(M)µ̄ΨHT
β

)
=: c0 > 0, which,

from (2.7), yields the rough lower bound ε ≥ K1c0/
√
M . This implies in turn (after tedious

computations) that the second term in the definition (2.8) of c cannot be (up to constant) larger
than the first term, hence the equality (2.10).

• Furthermore, the probability upper bound (2.9) can be re-parametrized under the form P (· · · ≥ ε(t))≤
e−t for any given t≥ 0 with some appropriate ε(t). Consider again the i.i.d. case to simplify the
exposure, leveraging the above simplifications.

– The inequality 2 exp

(
−
(

ln

(
1 + Mε

KΨHT
1/β

(M)

))β)
≤ e−t/2 holds when ε ≥ ε1(t) :=

K
ΨHT

1/β
(M)

M ΨHT
1/β(4et − 1).
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– Because exp
(
− Mε2

K(1+cε)

)
≤ exp

(
−Mε2

2K

)
+exp

(
− Mε

2Kc

)
, the inequality exp

(
− Mε2

K(1+cε)

)
≤

e−t/2 holds as soon as ε≥ ε2(t) :=

√
2K(t+ln(4))

M and ε≥ ε3(t) :=
2KK1ΨHT

1/β
(M)(t+ln(4))

M .

– Last, (2.7) remains, i.e. ε≥ ε0 :=K2
1ΨHT

1/β(M)

√
VF+

M .
All in all, (2.9) can be rewritten as

P

 sup
f∈F

1

M

∑
m∈[M ]

(f(Xm)−E [f(Xm)])≥max(ε0, ε1(t), ε2(t), ε3(t))

≤ e−t, t≥ 0.

Observe that as t→ +∞ (all other parameters being fixed), the terms ε2(t), ε3(t) grows like t
and
√
t, like in the usual cases of sub-exponential and sub-gaussian tails. The effect of β-heavy

tails appears in ε1(t) which grows like et
1/β

.

Theorem 2.4 is an instrumental result in statistical learning theory, in particular for Empirical Risk
Minimization. We refer to the lectures [Kol11] for a broad exposition. Let us exemplify in a regression
problem, by deriving data-dependent bounds on the excess risk in this setting of β-heavy tailed random
variables. Results for bounded functions can be found in [Kol11, Chapter 5]. Under the assumptions of
Theorem 2.4, set

f?(x) := E [Y |X = x] and fM (x) := arg inf
f∈F

1

M

M∑
m=1

(Ym − f(Xm))2,

corresponding to the empirical regression function with quadratic loss. For a given measurable function
g : Rd ×R 7→R, define its squared L2 norm under the true and the empirical measures by

‖g(X,Y )‖22 :=

∫
Rd

∫
R
g2(x, y)P (dx,dy), ‖g(X,Y )‖22,M :=

1

M

M∑
m=1

g2(Xm, Ym).

We claim that the excess risk is bounded as follows

‖fM (X)− f?(X)‖22 − inf
f∈F
‖f(X)− f?(X)‖22

≤ sup
f∈F

(
‖Y − f(X)‖22 − ‖Y − f(X)‖22,M

)
+ sup
f∈F

(
‖Y − f(X)‖22,M − ‖Y − f(X)‖22

)
, (2.11)

which implies a bound on the probability of excess risk deviating more than ε:

P
(
‖fM (X)− f?(X)‖22 − inf

f∈F
‖f(X)− f?(X)‖22 ≥ ε

)

≤ P

(
sup
f∈F

(
‖Y − f(X)‖22 − ‖Y − f(X)‖22,M

)
≥ ε/2

)
+ P

(
sup
f∈F

(
‖Y − f(X)‖22,M − ‖Y − f(X)‖22

)
≥ ε/2

)
.

The above probabilities are estimated by two applications of Theorem 2.4 with X̃ = (X,Y ) and F̃± =
{(x, y) 7→ ±(y− f(x))2, f ∈ F}, leading to an explicit bound for the probability of large excess risk.
To prove (2.11), observe that for any f ∈ F , ‖Y − f(X)‖22 = ‖Y − f?(X)‖22 + ‖f(X)− f?(X)‖22
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and

‖Y − fM (X)‖22,M − inf
f∈F
‖Y − f(X)‖22,M = 0. (2.12)

This readily gives

‖fM (X)− f?(X)‖22 − inf
f∈F
‖f(X)− f?(X)‖22

= ‖Y − fM (X)‖22 − inf
f∈F
‖Y − f(X)‖22 − ‖Y − fM (X)‖22,M + inf

f∈F
‖Y − f(X)‖22,M

≤ sup
f∈F

(
‖Y − f(X)‖22 − ‖Y − f(X)‖22,M

)
+ sup
f∈F

(
‖Y − f(X)‖22,M − ‖Y − f(X)‖22

)
,

as claimed.

3. Proofs

3.1. Proof of Theorem 2.1

3.1.1. Preliminary results

Here, we recall Lemmas 8 and 9 of [Tal89], as well as the "Basic Estimate", which will enable us to
prove Theorem 2.1. In addition to the independent B-valued random variables (Ym)m∈[M ], we will
need to consider extra independent Rademacher random variables. Everything is defined as follows.
Let

(
ΩM ×Ω′,

∑M ⊗
∑′,P) the basic probability space, where P = P⊗P′ such that the variables

Ym are defined on ΩM and for ω = (ωm)m∈[M ], Ym(ω) depends only on ωm. Let (εm)m∈[M ] be a set
of random variables defined on Ω′ with a Rademacher distribution independent of (Ym)m∈[M ]. The
following inequalities can be proven independently apart from the context of Orlicz norms.

Lemma 3.1 ([Tal89, Lemma 8]). If P
(

maxm∈[M ] ‖Ym‖B ≥ t
)
≤ 1

2 , then

∑
m∈[M ]

P (‖Ym‖B ≥ t)≤ 2P
(

max
m∈[M ]

‖Ym‖B ≥ t
)
. (3.1)

Lemma 3.2 ([Tal89, Lemma 9]). Set X(r) the r-th largest term of (‖Ym‖B)m∈[M ]. Then

P
(
X(r) ≥ t

)
≤ 1

r!

 ∑
m∈[M ]

P (‖Ym‖B ≥ t)

r . (3.2)

Set

µ := E

∥∥∥∥∥∥
∑

m∈[M ]

εmYm

∥∥∥∥∥∥
B

 , (3.3)
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µ > 0 because the Ym’s are not all zero random variables (to avoid trivial situations). We now recall
a key inequality which, combined with the previous lemmas, will enable us to prove the announced
theorem.

Theorem 3.1 ([Tal89, Equation (2.5)]). For k, q positive integers s.t. k ≥ q, u > 0 and u′ > 0, we
have

P

∥∥∥∥∥∥
∑
i∈[M ]

εiYi

∥∥∥∥∥∥
B

≥ 4qµ+ u+ u′

≤ 4 exp

(
− u2

64qµ2

)
+

(
K0

q

)k

+ P

∑
r≤k

X(r) > u′


where the constant K0 is a universal constant.

3.1.2. Symmetrisation argument for Ψ convex

In the next Subsection, because we rely on Theorem 3.1, we are going to prove the inequality (2.3) on

symmetric random variables first (e.g. variables Ym s.t. εmYm
d
= Ym). The extension to non-symmetric

variables will be direct thanks to Lemma 3.4 which establishes an "equivalence in norms" relationship
between the Orlicz norm of the sum of random variables and its associated Rademacher average.

Lemma 3.3. Let Ψ be convex Orlicz function and ‖·‖Ψ the associate Orlicz norm. For any mean zero
random variable Z ∈ LΨ(B), we have ‖Z‖Ψ ≤

∥∥Z −Z ′∥∥Ψ, with Z ′ any B-valued random variable
such that E

[
Z ′|Z

]
= 0.

Proof. Let c > 0,

E [Ψ(‖Z‖B /c)]
(a)
= E

[
Ψ

(∥∥E [Z −Z ′ | Z]∥∥B
c

)]
(b)
≤ E

[
Ψ

(
E
[∥∥Z −Z ′∥∥

B
| Z
]

c

)]
(c)
≤ E

[
E

[
Ψ

(∥∥Z −Z ′∥∥B
c

)
| Z

]]
= E

[
Ψ

(∥∥Z −Z ′∥∥B
c

)]

where in (a) we use Z ′ has a zero conditional mean, in (b) we use that Ψ is non decreasing and
the triangular inequality holds for the ‖.‖B , in (c) we apply the Jensen inequality. Hence by taking
c =

∥∥Z −Z ′∥∥Ψ > 0, the right hand side is smaller than 1 (using Property (i) in Section 2.1), and
therefore ‖Z‖Ψ ≤ c=

∥∥Z −Z ′∥∥Ψ.

Lemma 3.4. Let Ψ be as in Lemma 3.3. Let (Ym)m∈[M ] be a sequence of independent mean-zero
random variables in LΨ(B). Let (εm)m∈[M ] be independent Rademacher random variables, and let
(Y ′m)m∈[M ] be an independent copy of the sequence (Ym)m∈[M ]. Then∥∥∥∥∥∥

∑
m∈[M ]

Ym

∥∥∥∥∥∥
Ψ

≤

∥∥∥∥∥∥
∑

m∈[M ]

Ym −
∑

m∈[M ]

Y ′m

∥∥∥∥∥∥
Ψ

=

∥∥∥∥∥∥
∑

m∈[M ]

εm(Ym − Y ′m)

∥∥∥∥∥∥
Ψ
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≤ 2

∥∥∥∥∥∥
∑

m∈[M ]

εmYm

∥∥∥∥∥∥
Ψ

≤ 4

∥∥∥∥∥∥
∑

m∈[M ]

Ym

∥∥∥∥∥∥
Ψ

.

Later on, we will apply these inequalities with Ψ = ΨHT
β and Ψ(x) = x (the associated Orlicz norm

corresponds then to the L1 norm).

Proof. The first inequality comes from the application of Lemma 3.3 with Z =
∑
m∈[M ] Ym and

Z ′ =
∑
m∈[M ] Y

′
m. Since εm takes values±1 independently ofZ,Z ′, we have Ym−Y ′m

d
= Y ′m−Ym

d
=

εm(Ym − Y ′m). Since the sequences are independent in m, we obtain the equality of Lemma 3.4. The
second inequality is a consequence of the triangular inequality (iv) and the previous identities in distri-
bution. The last inequality is a consequence of the application of Lemma 3.3 with Z =

∑
m∈[M ] εmYm

and Z ′ =
∑
m∈[M ] εmY

′
m satisfying

E
[
Z ′|Z

]
= E

E
 ∑
m∈[M ]

εmY
′
m |εm, Ym,m ∈ [M ]

 | Z
= 0

and of the triangular inequality: ‖Z‖Ψ≤
∥∥Z −Z ′∥∥Ψ =

∥∥∥∑m∈[M ](Ym − Y ′m)
∥∥∥

Ψ
≤ 2

∥∥∥∑m∈[M ] Ym

∥∥∥
Ψ

.

3.1.3. Completion of the proof of Theorem 2.1

We will denote K a positive constant depending only on β, that may vary from line to line. We assume
that at least one of the Ym’s is not zero a.s., otherwise the announced inequality (2.3) is obvious.

In view of the inequalities of Lemma 3.4, it is enough to do the reasoning and show the inequality
(2.3) with the variables (εmYm,m ∈ [M ]) instead of (Ym,m ∈ [M ]).

� Rescaling. Note that (2.3) is invariant by homogeneous rescaling (see Property (ii) of Section
2.1), i.e. the inequality remains the same for the random variables Ỹm := εmYm

C for any C > 0. For the
choice

C :=

∥∥∥∥∥∥
∑

m∈[M ]

εmYm

∥∥∥∥∥∥
L1(B)

+

∥∥∥∥ max
m∈[M ]

‖Ym‖B

∥∥∥∥
ΨHT
β

> 0,

observe that ∥∥∥∥∥∥
∑

m∈[M ]

Ỹm

∥∥∥∥∥∥
L1(B)

≤ 1 and
∥∥∥∥ max
m∈[M ]

∥∥∥Ỹm∥∥∥
B

∥∥∥∥
ΨHT
β

≤ 1, (3.4)

therefore the inequality (2.3) writes ∥∥∥∥∥∥
∑

m∈[M ]

Ỹm

∥∥∥∥∥∥
ΨHT
β

≤ 2K.



Concentration inequalities for β-heavy tailed random variables 13

Conversely, if the above holds for some K (independent from the Ỹm’s verifying (3.4)), then (2.3)
holds for the Ym’s. All in all, it means that without loss of generality, we can assume∥∥∥∥∥∥

∑
m∈[M ]

εmYm

∥∥∥∥∥∥
L1(B)

≤ 1 and
∥∥∥∥ max
m∈[M ]

‖Ym‖B

∥∥∥∥
ΨHT
β

≤ 1,

and then show, under these assumptions, the existence of K ∈R (independent on Ym’s) such that

E

exp

ξβ

∥∥∥∑m∈[M ] εmYm

∥∥∥
B

K

≤ 2.

� Deviation bounds. By Property (iii) of Section 2.1 and since we assumed
∥∥∥maxm∈[M ] ‖Ym‖B

∥∥∥
ΨHT
β

≤

1,

P
(

max
m∈[M ]

‖Ym‖B ≥ t
)
≤ 2exp

(
−ξβ(t)

)
, t≥ 0.

The function ξβ(·) = (ln (1 + ·))β being continuously increasing from 0 to +∞, there exists t0 s.t.

ξβ(t0) = 2 ln2 and ∀t≥ t0, 2 exp
(
−ξβ(t)

)
≤ 1/2; for further use, notice the value t0 = e(2 ln2)

1
β −1.

Then applying Lemma 3.1, for t≥ t0, we have∑
m∈[M ]

P (‖Ym‖B ≥ t)≤ 2P
(

max
m∈[M ]

‖Ym‖B ≥ t
)
≤ 4 exp

(
−ξβ(t)

)
.

Hence Lemma 3.2 yields for r ∈N∗, t≥ t0

P
(
X(r) ≥ t

)
≤

4r exp
(
−rξβ(t)

)
r!

. (3.5)

Denote β̃ = bβc + 1 ≥ 2. Equation (3.5) yields for t ≥ (eβ̃ − 1)r
β̃
β (notice that t ≥ e2 − 1 ≥ t0 as

requested)

P
(
X(r) ≥ tr−

β̃
β

)
≤

4r exp

(
−r[ln(1 + tr

− β̃
β )]β

)
r!

=: f(r, t).

Since β̃/β > 1, the sequence (r
− β̃
β )r≥1 is summable. Set Sβ :=

∑
r≥1 r

− β̃
β < +∞ and g(t) :=

(t/(eβ̃ − 1))β/β̃ . From the inclusion {
∑
r≤g(t)X

(r) ≥ tSβ} ⊂
⋃
r≤g(t){X(r) ≥ tr−

β̃
β } and writing a

union bound, we get

P

 ∑
r≤g(t)

X(r) ≥ tSβ

≤ ∑
r≤g(t)

f(r, t). (3.6)
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We claim that for all 1≤ r ≤ g(t)

r1/β ln(1 + tr
− β̃
β )≥ ln(1 + t). (3.7)

This is a consequence of the above lemma applied with ρ= r
1
β ≥ 1 and τ = tr

− β̃
β ≥ eβ̃ − 1.

Lemma 3.5. For all ρ≥ 1 and τ ≥ eβ̃ − 1, we have ρ ln(1 + τ)≥ ln(1 + τρβ̃).

Proof. The function f(ρ) := ρ ln(1 + τ)− ln(1 + τρβ̃) vanishes at ρ= 1, let us prove that it is non-
decreasing in ρ provided that τ ≥ eβ̃ − 1. Indeed,

f ′(ρ) = ln(1 + τ)− β̃ρβ̃−1τ

1 + ρβ̃τ
.

Since ρβ̃τ ≥ 0 and ρ ≥ 1, we have β̃ρβ̃−1τ

1+ρβ̃τ
≤ β̃

ρ ≤ β̃. Hence, f ′(ρ) ≥ ln(1 + τ) − β̃ ≥ 0. We are

done.

Plugging (3.7) into (3.6) yields

P

 ∑
r≤g(t)

X(r) ≥ tSβ

≤ ∑
r≤g(t)

4r

r!
exp

(
−[ln(1 + t)]β

)
≤ exp(4) exp(−ξβ(t)).

Let us recall that µ =
∥∥∥∑m∈[M ] εmYm

∥∥∥
L1(B)

≤ 1. We are now at the point to apply Theorem 3.1

with q = deK0e, u= t, u′ = tSβ , 2qµ≤ t and k = bg(t)c:

P

∥∥∥∥∥∥
∑

m∈[M ]

εmYm

∥∥∥∥∥∥
B

≥ t
(
Sβ + 3

)
≤ P

∥∥∥∥∥∥
∑

m∈[M ]

εmYm

∥∥∥∥∥∥
B

≥ 4qµ+ u+ u′


≤ 4 exp

(
− t2

64qµ2

)
+ exp (−bg(t)c) + P

 ∑
r≤g(t)

X(r) ≥ tSβ


≤ 4 exp

(
− t2

64qµ2

)
+ exp (−bg(t)c) + exp

(
4− ξβ(t)

)
.

The above inequality is valid for any t≥ t0 ∨ (2deK0eµ). Besides, in the above upper bound, the last
third is asymptotically the largest one, therefore there exists K > 0 such that

P

∥∥∥∥∥∥
∑

m∈[M ]

εmYm

∥∥∥∥∥∥
B

≥Kt

≤K exp
(
−ξβ(t)

)
, t≥ 0.
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� Orlicz norm bounds. The estimate implies for all c > 0:

E

exp

ξβ
∥∥∥∥∥∥

∑
m∈[M ]

εmYm

∥∥∥∥∥∥
B

/(cK)

−1

=

∫ ∞
0

exp
(
ξβ (t)

)
ξ′β (t)P


∥∥∥∑m∈[M ] εmYm

∥∥∥
B

cK
≥ t

dt

≤K
∫ ∞

0
ξ′β (t) exp

(
ξβ (t)− ξβ(ct)

)
dt. (3.8)

Let us check that the above integral is finite for c > 1. Only the integrability at t→+∞ is questionable.
Write

ξβ(t)− ξβ(ct) = (ln(1 + t))β

1−

1 +
ln(

(1+ct)
(1+t)

)

ln(1 + t)

β


≈t→+∞ −β(ln(1 + t))β−1 ln(c).

Therefore, the function to integrate is bounded for t large by (up to constant)

g(t) :=
(ln(1 + t))β−1

(1 + t)
e−

1
2
β(ln(1+t))β−1 ln(c).

We easily check that
∫+∞

0 g(t)dt=
∫+∞

0 yβ−1e−
1
2
βyβ−1 ln(c)dy <+∞ since β > 1 and c > 1.

Furthermore, by monotone convergence theorem, the bound (3.8) converges to 0 as c→+∞, con-
sequently

E

exp

ξβ

∥∥∥∑m∈[M ] εmYm

∥∥∥
B

cK

≤ 2

for a c= cβ large enough. We have proved that
∥∥∥∑m∈[M ] εmYm

∥∥∥
ΨHT
β

≤ cβK.

3.2. Proof of Theorem 2.2

We start by recalling the general maximal inequality on which our proof is based.

Lemma 3.6 ([vdVW96, Lemma 2.2.2]). Let Ψ be a convex Orlicz function satisfying

lim sup
x,y→+∞

Ψ(x)Ψ(y)/Ψ(cΨxy)<+∞ (3.9)

for some constant cΨ > 0. Then, there is a constantK > 0 such that for anyB-valued random variables
Y1, . . . , YM , ∥∥∥∥ max

m∈[M ]
‖Ym‖B

∥∥∥∥
Ψ

≤KΨ−1(M) max
m∈[M ]

‖Ym‖Ψ .
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For β > 1, ΨHT
β is a convex Orlicz function, thus it remains to establish (3.9) to get Theorem 2.2. We

prove that one can take cΨ = 1. Let c≥ 13 s.t. ΨHT
β (c2)≥ 1. Let x, y st. x≥ c and y ≥ c: then

ΨHT
β (x)ΨHT

β (y)≤ e(ln(1+x))βe(ln(1+y))β

≤ e(ln(x))β+(ln(y))β−(ln(xy))βe(ln(1+xy))β e2 supz≥c(ln(1+z))β−(lnz)β︸ ︷︷ ︸
:=C(c)

.

• C(c) is finite: indeed, by standard equivalents, we have that

(ln(1 + z))β − (lnz)β= (lnz)β

([
1 +

ln(1 + z−1)

ln(z)

]β
− 1

)
∼z→∞ β

(lnz)β−1

z

which converges to 0 at infinity.
• Notice that (ln(xy))β − (ln(x))β ≥ (ln(y))β for any x, y ≥ 1. Indeed, setting u = lnx ≥ 0,
v = lny ≥ 0,

(u+ v)β − uβ =

∫ u+v

u
βzβ−1dz ≥

∫ v

0
βzβ−1dz = vβ

(because z 7→ βzβ−1 is increasing since β > 1).
• Last, since e(ln(1+xy))β = ΨHT

β (xy) + 1≥ΨHT
β (c2) + 1≥ 2, one has

e(ln(1+xy))β =
e(ln(1+xy))β

e(ln(1+xy))β − 1
ΨHT
β (xy)≤ 2ΨHT

β (xy).

All in all, we conclude that ΨHT
β (x)ΨHT

β (y)≤ 2C(c)ΨHT
β (xy), for any x, y ≥ c. We are done.

3.3. Proof of Theorem 2.4

We follow the strategy of [CGS20] by truncating the unbounded functions f by a threshold c, whose
impact is analyzed using the Hoffman-Jorgensen inequality [LT13, Proposition 6.8] and the Talagrand
inequality of Theorem 2.1. The deviation probability related to the newly bounded random variables
is quantified thanks to the Klein-Rio inequalities [KR05] together with the Dudley entropy integral
bound.

Here are the notations used along this proof. We denote by K a positive constant that may change
from line to line in the computations: this generic constant K may depend on universal constants and
β, but it does not depend on the sample X1, . . . ,XM , its size M , nor the class of functions F , neither
ε. For ease of notations, we write a≤K b when a≤Kb.
For a given c > 0, set

Rcf := f −Tcf where Tcf :=−c∨ f ∧ c,

TcF := {Tcf : f ∈ F},

3one can take c=

√
e(ln 2)1/β − 1≥ 1 for which ΨHT

β (c2) = 1.
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T mc f(·) := Tcf(·)−E [Tcf(Xm)] ,

Zc := sup
f∈F

1

M

∑
m∈[M ]

T mc f(Xm).

Note that the function T mc f is centered w.r.t. the distribution of Xm, and bounded by 2c.
Assume that c > 0 and ε > 0 are such that

sup
f∈F

∣∣∣∣∣∣ 1

M

∑
m∈[M ]

E [Rcf(Xm)]

∣∣∣∣∣∣≤ ε/4, (3.10)

E [Zc]≤ ε/4. (3.11)

By writing f =Rcf + Tcf and using the sub-additivity of the supremum, we easily get

sup
f∈F

1

M

∑
m∈[M ]

(f(Xm)−E [f(Xm)])

≤ Zc −E [Zc] + sup
f∈F

∣∣∣∣∣∣ 1

M

∑
m∈[M ]

Rcf(Xm)

∣∣∣∣∣∣+ ε/2.

Hence, the probability of deviation in Theorem 2.4 is bounded by

P

 sup
f∈F

∣∣∣∣∣∣ 1

M

∑
m∈[M ]

Rcf(Xm)

∣∣∣∣∣∣≥ ε/4
+ P (Zc −E [Zc]≥ ε/4) =: (?) + (??).

� Term (?). Owing to the deviation inequality (iii) from Section 2.1, it is bounded by

P

 ∑
m∈[M ]

sup
f∈F
|Rcf(Xm)| ≥Mε/4



≤ 2 exp

−
ln

 Mε/4∥∥∥∑m∈[M ] supf∈F |Rcf(Xm)|
∥∥∥

ΨHT
β

+ 1



β .

Using the Talagrand inequality of Theorem 2.1 and the Hoffman-Jorgensen inequality [LT13, Proposi-
tion 6.8], and following line by line the arguments of [CGS20, Section 5.5, Inequalities (38) and (39)],
we can show that the above ‖.‖ΨHT

β
norm is bounded by

K

∥∥∥∥ max
m∈[M ]

F (Xm)

∥∥∥∥
ΨHT
β

,

provided that c ≥ 8E
[
maxm∈[M ]F (Xm)

]
. The above arguments are crucial to deal both with the

truncation in c and the sup in f . Furthermore, the maximal inequality (2.4) with Ym := F (Xm) gives
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that ∥∥∥∥ max
m∈[M ]

F (Xm)

∥∥∥∥
ΨHT
β

≤ Cβ,(2.4)Ψ
HT
1/β(M)µ̄ΨHT

β
. (3.12)

All in all, we have

c≥ 8E
[

max
m∈[M ]

F (Xm)

]
=⇒ (?)≤ 2 exp

−
ln

 Mε

Kµ̄ΨHT
β

ΨHT
1/β

(M)
+ 1

β
 .

The above condition on the left hand side is met as soon as

c≥K ΨHT
1/β(M)µ̄ΨHT

β
,

where we have used E [·]≤K ‖·‖ΨHT
β

and (3.12).

� Term (??). Apply the Klein-Rio inequality [KR05, Theorem 1.1] (we shall use the form presented
in [CGS20, Theorem 8] which directly fits our setting), it shows that (??) is bounded by

exp

(
− M(ε/4)2

2(σ2 + 4cE(Zc)) + 6c(ε/4)

)
where σ2 := supf∈F

1
M maxm∈[M ] E

[
(T mc f)2(Xm)

]
. Observe that

σ2 ≤ sup
f∈F

max
m∈[M ]

Var [T mc f(Xm)]≤ sup
f∈F

max
m∈[M ]

E
[
Tcf2(Xm)

]
≤ µ2

2.

Using in addition the bound (3.11) on E(Zc), we get

(??)≤ exp

(
− Mε2

K(µ2
2 + cε)

)
where K is a universal constant.

� Condition (3.10). FromRcf(x) = (f(x)− c)+ − (f(x) + c)−, we easily get

|E [Rcf(Xm)]| ≤
∫ +∞

c
P (|f(Xm)| ≥ z) dz

≤ 2

∫ +∞

c
exp(−(ln(z/λ+ 1))β)dz

= 2λ

∫ +∞

c/λ
exp(−(ln(z + 1))β)dz =: 2λI(c/λ)

where λ := µΨHT
β

. A standard calculus shows that

I(y)∼y→+∞
y

β(ln(y+ 1))β−1
exp(−(ln(y+ 1))β),
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and thus

I(y)≤K exp(−(ln(y+ 1))β/2) =: J (y), ∀y ≥ 0.

This gives

sup
f∈F

∣∣∣∣∣∣ 1

M

∑
m∈[M ]

E [Rcf(Xm)]

∣∣∣∣∣∣≤K λ exp
(
− (ln(c/λ+ 1))β/2

)
.

Therefore, to ensure (3.10) it is enough to take

c≥ µΨHT
β

(
exp

(
(2 ln+(KµΨHT

β
/ε))1/β

)
− 1
)

for some constantK > 0. Observe that the use of ln+(.) guarantees that for a deviation ε large enough,
the above lower bound is zero, meaning that any value of c ≥ 0 ensures that (3.10) holds, as it is
expected (for large ε).

� Condition (3.11). Deriving a bound on the expectation of the supremum follows a standard routine
using Dudley entropy integral bound. For sake of brevity, we closely follow the arguments of [CGS20,
p.20, term E

[
Z̄Tc

]
]. It gives that

E [Zc]≤ 2E
[
CD√
M

∫ ∞
0

√
ln(N2(z,dF ,TcF))dz

]
(3.13)

where dF (f, g) :=
(

1
M

∑M
m=1 |f(Xm)− g(Xm)|2

)1/2
and N2(z,dF ,TcF) is the covering number

of TcF with respect to the distance dF with balls of radius z (see [GKKW02, Definition 9.3]). Actually,
since functions in TcF are bounded by c, N2(z,dF ,TcF) = 1 for z ≥ 2c and therefore, the above
integral can be restricted to [0,2c] without modification. In addition, we have the following universal
upper bound in terms of VC dimension:

0< z < 2c/4 =⇒ N2(z,dF ,TcF)≤ 3

(
2e

(
2c

z

)2

ln

(
3e

(
2c

z

)2
))VF+

. (3.14)

Indeed, the above estimate follows from [GKKW02, Lemma 9.2, Theorem 9.4 with B = 2c and p= 2,
V(TcF)+ ≤ VF+ in the proof of Theorem 9.6]. See [vdVW96, Theorem 2.6.7] for a variant of this
upper bound. SinceN2(z,dF ,TcF) is non-decreasing in z, and since we do not pay much attention to
universal constants, we can simply write

0< z ≤ 2c =⇒ N2(z,dF ,TcF)≤
(
Kc

z

)3VF+

,

for a universal constant K. Plugging this into (3.13) readily leads to

E [Zc]≤Kc
√

VF+√
M

.

� Conclusion. Gathering all the estimates and conditions leads to the statement of Theorem 2.4.
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3.4. Proof of Proposition 2.1

Item 1. Observe that ΨHT
1 (x) = x and ΨHT

β1
(ΨHT

β2
(x)) = ΨHT

β1β2
(x) for any x≥ 0; the property of group

isomorphism readily follows.
Items 2 and 4 are straightforward to verify.
Item 3. ΨHT

β is a C∞-function on (0,∞), with a second derivative equal to

ΨHT
β
′′
(x) =

exp((ln (1 + x))β) (ln(1 + x))β−2

(1 + x)2

× β ×
(
β (ln(1 + x))β + (β − 1)− ln(1 + x)

)
︸ ︷︷ ︸

=:g(ln(1+x))

.

The function g is continuously differentiable on R+, strictly positive at 0 (g(0) = β − 1> 0) and goes
to infinity at infinity (since β > 1); the critical points of g′ are solutions to β2yβ−1 − 1 = 0, therefore

it is unique (equal to yβ := β
− 2
β−1 ) and corresponds to the minimum of g. Let us evaluate the sign of

g at the minimum:

g(yβ) = βyββ + (β − 1)− yβ =
yβ
β

+ (β − 1)− yβ

= (β − 1)

(
1−

yβ
β

)
= (β − 1)

(
1− 1

β
β+1
β−1

)
> 0.

All in all, we have proved that ΨHT
β
′′
(x)> 0 for any x > 0.

4. Conclusion
To conclude, we have extended the Talagrand inequality for an Orlicz norm adapted to variables with
β-heavy tails (Proposition 2.1 and Theorem 2.1). We have also shown that a maximal inequality holds
(Theorem 2.2), which, in combination with the Talagrand inequality, allows for a concentration in-
equality for the sum of independent centered β-heavy tailed random variables (Corollary 2.3). Then
we have extended this inequality to supremum of functions of random variables with β-heavy tails
(Theorem 2.4), by combining previous results with the Hoffman-Jorgensen, Klein-Rio and Dudley
entropy integral inequalities.
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