MCSS-based Predictions of Binding Mode and Selectivity of Nucleotide Ligands - Archive ouverte HAL
Article Dans Une Revue Journal of Chemical Theory and Computation Année : 2021

MCSS-based Predictions of Binding Mode and Selectivity of Nucleotide Ligands

Roy González-Alemán
  • Fonction : Auteur
Nicolas Chevrollier
  • Fonction : Auteur
Manuel Simoes
  • Fonction : Auteur
Luis Montero-Cabrera
  • Fonction : Auteur

Résumé

Computational fragment-based approaches are widely used in drug design and discovery. One of their limitations is the lack of performance of docking methods, mainly the scoring functions. With the emergence of fragment-based approaches for single-stranded RNA ligands, we analyze the performance in docking and screening powers of an MCSS-based approach. The performance is evaluated on a benchmark of protein-nucleotide complexes where the four RNA residues are used as fragments. The screening power can be considered the major limiting factor for the fragment-based modeling or design of sequence-selective oligonucleotides. We show that the MCSS sampling is efficient even for such large and flexible fragments. Hybrid solvent models based on some partial explicit representation improve both the docking and screening powers. Clustering of the {\it n} best-ranked poses can also contribute to a lesser extent to better performance. A detailed analysis of molecular features suggests various ways to optimize the performance further.
Fichier principal
Vignette du fichier
mcss.pdf (43.88 Mo) Télécharger le fichier
jctc-supp.pdf (7.07 Mo) Télécharger le fichier
jctc.zip (81.11 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03174156 , version 1 (18-03-2021)

Identifiants

Citer

Roy González-Alemán, Nicolas Chevrollier, Manuel Simoes, Luis Montero-Cabrera, Fabrice Leclerc. MCSS-based Predictions of Binding Mode and Selectivity of Nucleotide Ligands. Journal of Chemical Theory and Computation, 2021, ⟨10.1021/acs.jctc.0c01339⟩. ⟨hal-03174156⟩
136 Consultations
33 Téléchargements

Altmetric

Partager

More