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Abstract

Computational fragment-based approaches are widely used in drug design and dis-

covery. One of their limitations is the lack of performance of docking methods, mainly

the scoring functions. With the emergence of fragment-based approaches for single-

stranded RNA ligands, we analyze the performance in docking and screening powers of

an MCSS-based approach. The performance is evaluated on a benchmark of protein-

nucleotide complexes where the four RNA residues are used as fragments. The screening

power can be considered the major limiting factor for the fragment-based modeling or

design of sequence-selective oligonucleotides. We show that the MCSS sampling is ef-

ficient even for such large and flexible fragments. Hybrid solvent models based on

some partial explicit representation improve both the docking and screening powers.
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Clustering of the n best-ranked poses can also contribute to a lesser extent to better per-

formance. A detailed analysis of molecular features suggests various ways to optimize

the performance further.

1 Introduction

Fragment-based approaches are widely used in ligand design with several examples of "suc-

cess stories" when applied to drug design and drug discovery1–4 since the middle of the

’90s .5 More than 30 fragment-based drug candidates have entered the clinic.6 Despite some

hindrances related to synthetic accessibility and ligand-design strategies, fragment-based ap-

proaches remain very attractive while dealing more efficiently with chemical space, molecular

complexity, probability of binding, and ligand efficiency.6 After high throughput screening,

fragment-based design (FBD) approaches represent one of the three major lead generation

strategies for clinical candidates.7 Traditionally, the FBD approaches have been applied to

the design of ligands assembled using small chemical groups selected from the fragments li-

brary, which is often built based on drug-like criteria. Since the fragments should also cover

some chemical space with the diversity of chemical groups and molecular properties, a good

strategy is needed to assemble the fragments.6

Both experimental and computational approaches have been developed based on the

same principles that weak-binding fragments can be converted into highly efficient ligands

by covalent linking.6,8,9 In the experimental approaches, the fragments are validated by some

screening methods, some of which are high throughput, e.g., by surface plasmon resonance.10

A computational screen of fragment libraries is faster and more cost-effective than in experi-

mental approaches. However, the lack of accuracy of the scoring functions is often invoked for

their poor performance.11–14 Criteria such as the docking and screening powers are used to

evaluate their ability to discriminate native poses from false binding poses, and high-affinity

or highly-selective binders from low-affinity and/or poorly-selective binders, respectively.15

MCSS (multiple copy simultaneous search) is a computational method that is used within
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the framework of FBD approaches, although it does not include any fragment-assembly

strategy.16 MCSS mainly performs local and iterative docking calculations based on an

efficient sampling method17 which is implemented in the CHARMM program.18 MCSS is

used as a first step in the FBD process as it generates distributions of functional groups or

fragments at the surface of a protein target composed of clustered docking poses.16 Thus, it

makes it possible to perform virtual screening using pre-defined16,19,20 or customized fragment

libraries.21

MCSS has been widely used in FBD approaches in conjunction with fragment-linking/merging

methods such as: HOOK,22 DLD,23 or CAVEAT24 for chemical groups, and OLIGO25 for

oligopeptides or SiteMap for peptidomimetics.26 The MCSS scoring function is based on

the CHARMM energy function; different strategies have been applied to improve its per-

formance using more accurate methods and/or implicit solvent models. The first strategy

includes post-processing of the MCSS fragment poses recalculating the score function by

adding solvation terms,27 or by rescoring (single-point energy) using a Generalized Born (GB)

model.28,29 The second strategy that is less time-consuming is to include solvent effects in

the energy function during the MCSS calculations using, for example, a distance-dependent

dielectric model,27 or an alternative charge model.30 Although implicit solvent models have

become very popular, their accuracy remains limited for the calculation of solvation free

energies.31 The role of solvent is critical in the sampling and scoring of chemical fragments,

but the implementation of explicit solvent and its evaluation in docking approaches remain

challenging.32

Among the assembling strategies (linking, merging, and growing), the linking strategy

is the one offering the better perspectives for the gain of binding energy.33 The fragment

merging or linking strategies consist of connecting covalently two non-competitive fragments

by fusing some chemical bonds or creating some additional chemical bond(s) using a spacer

to link both fragments.8,33 One of the contributions to the gain of binding affinity with

respect to that of the individual fragments comes from the rigid body entropic barrier,
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which is supposed to be independent of the molecular size.9,34,35 However, many factors make

the fragment linking strategies unsuccessful.36 In biopolymers, the chemical connectivity is

well-defined, and the linking strategy does not require a spacer that is already part of the

fragments. Thus, the linking only involves solving a distance-constraint problem to join

the connecting atoms of successive residues; it also guarantees a straightforward chemical

synthesis. On the other hand, the chemical diversity is reduced to that of the residues (20

for unmodified amino acids, 4 or 5 in the case of unmodified nucleotides, etc.). As mentioned

above, MCSS-based FBD approaches were applied repetitively to the design of peptides or

peptidomimetics19,25,26,37–39 or to other biomolecules such as aminoglycosides.30

RNA molecules have emerged both as tools and targets in therapeutics.40,41 In 2019,

twelve FDA-approved molecules for the treatment of various pathologies were already avail-

able: nine RNA drugs as siRNA or antisense oligonucleotide (ASOs), two small molecules

against RNA targets,42 and one aptamer.43,44 Like other RNA molecules, aptamers that

are generated experimentally via SELEX (systematic evolution of ligands by exponential

enrichment) offer several advantages over traditional drugs.45 Recent improvements in the

synthesis of modified aptamers known as SOMAmers46 that bind protein targets open new

perspectives of applications in bioanalysis47,48 and therapeutics.49 However, their application

in therapeutics is still limited by their large size and molecular weight. Furthermore, the

SELEX methodology cannot guarantee that the best binders have been selected (due to the

combinatorial complexity of the sequence space). Computational approaches could provide

a more rational strategy using structure-based methods.

A computational fragment-based approach was applied to the modeling of RNA ligands

using trinucleotide fragments (3-mers) to predict the binding mode of single-stranded RNAs

(up to 12-mers) to proteins.50 It was tested on a small set of six RNA binding proteins

(RBPs) and could generate near-native models of RNA-protein complexes with good accu-

racy (RMSD ≤ 2Å) in some cases.51 However, the scoring function still lacks accuracy to

discriminate near-native poses robustly and would need to be tested on a larger benchmark.
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The oligomer sequence is used as a constraint because of the complexity of the sampling in

the sequence space. Thus, the method is suited to the modeling but not to the design of

oligonucleotides against protein targets without any knowledge on the sequence. A MCSS-

FBD approach was also developed to predict the binding mode and sequence selectivity

of RNA ligands using nucleotide fragments.52 Short oligonucleotides (di- or tri-nucleotides)

corresponding to the residues that most contribute to the contacts with the protein could

be generated with good accuracy (RMSD ≤ 1.5Å) and the best score.52 However, when con-

sidering the whole sequence space, the scoring function was not robust enough in terms of

screening power to discriminate the true sequence binder from alternative sequence binders.

Thus, some improvements are still required for the de novo FBD of bound oligomers against

protein targets.

In this study, we examine both the docking and screening powers on an extended and rep-

resentative benchmark of protein-nucleotide complexes. A clustering of the MCSS-generated

poses is also proposed as a filtering process to select fewer relevant poses. Four solvent models

(implicit or hybrid: implicit/explicit) and five classes of nucleotide fragments (with various

charges and volumes) are tested (Fig 1). We also intend to evaluate a series of molecular

features associated with the lack of accuracy of the scoring functions. The identification of

such features would open the perspective of optimization and improvement of the docking

and screening powers for the FBD of sequence-selective oligonucleotides.

2 Methods

2.1 Protein-nucleotide Benchmark

The PDB are filtered out to select a set of protein-nucleotide complexes based on different

structural criteria associated with the atomic resolution and the structural similarity. A first

query is carried out to find protein complexes with each of the four nucleotides as ligands

and annotated in the PDB by the following labels: AMP, C5P, 5GP, U5P. An additional
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criterion based on a cutoff value of 2Å resolution is also used to select only high-resolution

X-ray structures. The resulting complexes are then clustered according to their sequence

similarities in order to remove the redundancy. If any chain in the protein of a complex has

at least 30% sequence identity with a chain in the protein from another complex, the two

complexes are grouped into the same cluster.

x4 
(A,C,G,U)

x121 
(complexes)

implicit

hybrid

charge model 
(std / scal) 

x5 
(5’-terminus)

x4 
(solvent)

Figure 1: Schematic description of the MCSS calculations performed on the protein-
nucleotide benchmark. Five chemical structures of the 5’-terminus are considered (R010,
R110, R210, R310, R410). For each 5’-terminus, the four standard nucleotides (A,C,G,U)
are also considered. The phosphate group is enclosed into a cylinder: the bigger the cylinder
the bigger sterically, the darker red the more negative charge (the grey color indicates a null
charge). Four solvent models are evaluated depending on the charge model (std: standard,
scal: scaled) and the solvent representation (implicit, or hybrid: implicit and explicit). A
protein target is represented in cartoon mode with the indication of the cubic box corre-
sponding to the explored region.

The crystal structure with the best resolution in each cluster is selected as the cluster’s

representative. The 188 complexes thus selected by pulling down the results from the four
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queries (AMP-bound: 123, C5P-bound: 18, 5GP-bound: 21, U5P-bound: 27) are then

manually curated to retain those that exhibit a known binding preference for the crystallized

ligand. This feature is established based on the literature and/or the annotation of the

protein, e.g., a C nucleotide for CMP-kinase, etc. After curation, the dataset is reduced to

132 complexes. An additional curation is performed to eliminate some potential redundancy

associated with the presence of identical binding sites for different types of nucleotides.

The followed procedure consists of superimposing all the protein structures using the

program TM-align53 and review all the structures that are similar based on the TM-score

(TM-score ≥ 0.8). Two binding sites are considered non-redundant if they differ by only one

amino acid residue in direct contact with the ligand. According to this criterion, only one

complex is removed from the dataset in the case of the proteins corresponding to the PDB

IDs: 3DXG (U5P ligand) and 3DJX (C5P ligand); the latter complex is conserved in the

dataset to compensate for the minor under-representation of C5P. The full procedure ends

up with a dataset of 131 protein-nucleotide complexes.

After a review of the MCSS calculations, ten protein-nucleotide complexes resulted in

non-productive (see below) and are then removed from further analyses. The resulting

benchmark is thus composed of 121 protein-nucleotide complexes associated with more than

13 biological functions (Fig. 2). Their binding features are characterized by the number

of contacts between the protein and its ligand, the fraction of buried surface area, the

number of H-bonds in the binding site, and the energy of interaction (Supplementary sec-

tion: Benchmark of 121 protein-nucleotide complexes, Supplementary Fig. 1) as calculated

by the MCSS scoring function (Supplementary sections: MCSS & Scoring). The contacts are

calculated using the program BINANA.54 The full tables, including the molecular features

of the protein-nucleotide complexes, are provided in the supplementary materials (Supple-

mentary section: Molecular features). The contacts are also analyzed by nucleotide type

(Supplementary Fig. 2).
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Figure 2: Distribution of molecular functions and nucleotide types in the protein-nucleotide
benchmark. Top: General distribution of molecular functions (left) and nucleotide type
(right). Middle-Bottom: Nucleotide-specifc distributions (AMP, GMP, CMP, UMP).
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2.2 MCSS

All the proteins are prepared using the CHARMM-GUI interface55 to convert the PDB files

into CRD and PSF formats. After removal of all heteroatoms, hydrogens are added to the

protein using the HBUILD command from CHARMM. Histidine residues are considered as

neutral. Water molecules were present in all the protein-nucleotide complexes, in particular

in the binding site. Water molecules were either removed or included before energy minimiza-

tion depending on the solvent representation (implicit/hybrid). The protein targets are then

submitted to an energy minimization (tolerance gradient of 0.1 kcal/mol/Å). The average

deviation between the experimental structure and the minimized structure is around 1.0Å

for the structures optimized without water molecules and 0.5Å for the structures optimized

with the crystallized water molecules (Supplementary Fig. 3).

The nucleotide library of fragments include multiple conformations, 5’ and 3’ patches (see

MCSS documentation: https://www.mcss.cnrs.fr/MCSSDOC). The initial default confor-

mation used in the calculations is a C3’-endo/anti ribonucleotide with standard values of the

seven torsion angles (phosphodiester backbone and base orientation). A set of five different

patches on the 5’ end is used in the current study with this nucleotide conformation: R010,

R110, R210, R310, R410. The nucleotide fragments are fully flexible during the calculations

and are prone to adjustements of the torsion angles to better fit in the binding site (Supple-

mentary section: MCSS, Supplementary Fig. 4). Each binding region is defined by a 17Å3

cubic box centered on the ligand centroid where all the inorganic compounds (e.g. metal

ions) or organic ligands were removed (Fig. 1). MCSS sample files are provided for the input

and nonbonded parameters (Supplementary section: MCSS).

Ten protein-nucleotide complexes (PDB IDs: 1HXP, 2CFM, 2Q4H, 3L9W, 3REX 4OKE,

4XBA, 5ERS, 5M45, and 5DJH) resulted as non-productive because of a significant confor-

mational change of the binding site after minimization (see protocol for energy minimization

above) that prevented the identification of native-like poses. They are excluded from post-

docking analyses due to 3 main reasons: (1) no native pose (RMSD ≤ 2.0Å) could be gener-
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ated because of a nucleotide-binding site too buried to be accessible after minimization (PDB

ID: 5M45, 5DJH); (2) no native pose could be identified consistent with a huge deviation

(RMSD > 2.0Å) of the crystallized ligand minimized within the optimized protein binding

site (PDB IDs: 1HXP, 2CFM, 4OKE, 4XBA, 5ERS); (3) the native poses identified showed

highly unfavorable energies indicating the presence of steric clashes between the nucleotide

and the minimized binding site (PDB IDs: 2CFM, 2Q4H, 3L9W, 3REX, 4XBA, 5ERS).

After the removal of those ten non-productive protein-nucleotide complexes, the resulting

benchmark includes 121 protein structures. The reference coordinates of the ligand used to

evaluate the poses correspond to those of the experimental X-ray structure.

The initial distributions of fragments are generated using 2000 groups distributed ran-

domly and repeatedly among 25 iterations. These parameters guarantee that fragments fully

saturate the binding region of all the protein-nucleotide complexes in the benchmark, i.e., the

atomic density of the fragments mapped into the box is at least twice that of the maximum

carbon density. During the calculations, the protein targets are considered as rigid. Final

poses (minima) generated by MCSS are ranked by their score (Equations 1-4) in ascending

order.

In the models that include explicit solvent (SCALW, STDW, and FULLW), the water

molecules are treated independently from the fragments, which are replicated from their

initial distribution during each iteration. The number of water molecules is conserved during

the calculations, and they are free to move around without any constraint. However, they

are not considered in the scoring as described below.

The MCSS score is defined by the electrostatic and van der Waals contributions to the

interaction energy plus a penalty term corresponding to the deviation of the fragment’s

conformation from its energy minimum:

∆Ebinding
MCSS = ∆Efragment

conf + ∆Einter
vdw + ∆Einter

el (1)
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The van der Waals contribution to the score is calculated in the same way for all models:

Evdw =
∑

excl(i,j)=1

(
Aij
r12ij
− Bij

r6ij

)
sw(r2ij, r

2
on, r

2
off ) (2)

while the electrostatic contribution depends on the solvent model used. In the case of the

"FULL" model, it is calculated using the standard charges as follows:

Eel =
ε=1∑

excl(i,j)=1

qiqj
4πε0rij

(3)

In the case of the other models using either scaled charges (i.e. "SCAL") or standard charges

(i.e. "STD") (Fig. 3), it is calculated this way:

Eel =
ε=3∑

excl(i,j)=1

qiqj
4πε0r2ij

sw(r2ij, r
2
on, r

2
off ) (4)

where the dielectric constant is set up according to some previous work.30

Several phosphate group models are used in the MCSS calculations to determine the op-

timal parameters for mapping nucleotides at the protein surface (Fig. 1). The five different

phosphate models correspond to 5’ patches (R010, R110, R210, R310, and R410) that differ

by the valence and charge of the phosphate group (Fig. 3). The R010 patched nucleotide

corresponds to the standard nucleotide residue defined in CHARMM, and it is the only

fragment with an unfilled valence shell at the 5’ end (Fig. 3). All the partial charges on

the phosphate groups are derived from the CHARMM parameters. They correspond to the

original CHARMM charges or derived from them based on Manning’s theory of counterion

condensation to account for the partial neutralization of the negative charges of polyelec-

trolytes solution.56 In this latter case, the net charge on the phosphate group is scaled down

according to the implicit solvent model previously used in MCSS calculations performed on

nucleic acids.30
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Figure 3: Nonbonded models used in the MCSS calculations. The R group corresponding
to the 5’ end of the nucleotide includes five flavors: R010 (standard nucleotide residue), R110

(5’OH patch), R210 (5’PO4H−), R310 (5’PO4CH−
3 ), and R410 (5’PO2−

4 ). Three solvent models
are used: the SCAL model is based on reduced charges on the phosphate group according to
Manning’s Theory56 and applied to nucleic acids;30 the "STD" (standard) or "FULL" models
are based on standard charges. The electrostatic contribution to the interaction energy is
calculated based on a constant dielectric formulation for the "FULL model". The SCAL
and "STD" models are based on a distance-dependent dielectric model. The van der Waals
contribution is calculated using the standard CHARMM27 potential energy function.57

The "SCAL" charges model (Fig. 3 - left) is combined with a distance-dependent dielectric

(Equation 4) with or without water molecules: SCAL and SCALW, respectively. The

default charges model "STD" or "FULL" (Fig. 3 - right) is combined with explicit solvent
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representation and a distance-dependent dielectric (Equation 4): STDW, or with a constant

dielectric (Equation 3): FULLW.

The MCSS software may be obtained after signing a license agreement upon request to

Martin Karplus (marci@tammy.harvard.edu). The source code can be obtained from a Git

repository on the I2BC software forge https://forge.i2bc.paris-saclay.fr).

2.3 Clustering

Although a clustering step is performed iteratively during the MCSS calculation, the default

RMSD cutoff value is low (0.5Å) to guarantee a fully extended search at each iteration before

re-ranking the intermediate poses and the minima. As a consequence, some minima may still

exhibit some degree of geometrical redundancy. Poses coming from different initial positions

may converge to similar minima while still being above the RMSD cutoff value. These

minima may exhibit large discrepancies in terms of score, especially when using implicit

solvent models where small deviations in coordinates may significantly alter the interaction

energy with the protein target. This redundancy may negatively impact further statistical

analysis as very similar poses can have a drastically different score. Such a bias can be

avoided through clustering analysis based on an approach similar to that already used by

MCSS.

A fast and straightforward orthogonal clustering procedure is performed on the MCSS

distributions; the first pose (best ranked) is taken as the seed of the first cluster, and all

other poses in the exploration with an RMSD less equal than 1Å to the seed (redundant

poses) are removed from the dataset. The seed is preserved, and the process resumes taking

as seed the next best-ranked available pose and performing the same comparison against

remaining poses. At the end, a set of geometrically non-redundant seeds is obtained. The

MCSS results presented include the analyses of the raw (R) and clustered (C) distributions.
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2.4 Docking and Screening Powers

The docking power is defined as the ability of the scoring functions to identify the native

ligand binding pose with respect to the non-native poses generated by MCSS for the native

nucleotide ligand (single nucleotide distribution). The MCSS predictions are ranked accord-

ing to the success rate for the identification of at least one native pose obtained on the full

benchmark in the Top-i (Top Native in the best ranked i poses) with i in a range from 1 to

100. For each patch (from R010 to R410), the number of protein-nucleotide complexes which

are predicted with a native pose in the Top-i follows a similar trend between the different

models.

The scoring functions used are those implemented into MCSS with the four solvent models

which are evaluated. Four alternative scoring functions used in the comparative assessment

of scoring functions (CASF) challenges14,15 have been used as well as two MM-GB models

through a rescoring scheme based on single-point calculations to assess the relative perfor-

mance of MCSS in docking power. Implicit solvent models such as MM-GB models28,29 have

been applied to the rescoring of MCSS minima. The two MM-GB models are CHARMM

implementations: GBSW58 and GBMV.59 The other four selected scoring functions are ei-

ther generic: Autodock Vina ,60 and Vinardo,61 or specialized on nucleic acids ligands for

ITscorePR,62 and ∆vinaRF20.63 The impact of the clustering on the scoring performance is

also evaluated (Supplementary section: Scoring, Supplementary Fig. 5). Finally, the docking

power is decomposed per the nucleotide type (Supplementary Fig. 6).

To evaluate the screening power, the MCSS distributions from the four nucleotides are

merged and sorted according to their score in increasing order as in the nucleotide-specific

distributions (from the more negative to the less negative or positive). In each Top-i , a

prediction is considered as optimal if both conditions are met: (1) it corresponds to a native

pose (RMSD ≤ 2.0Å), (2) the native nucleotide is ranked ahead of the three other non-native

nucleotides. For example, an optimal prediction in the Top-1 means a native pose is found

with the best score from the merged distributions.

14



Since the scoring function is still an estimate and raw approximation of the relative bind-

ing energy, we consider as good predictions the cases where the native nucleotide is predicted

within a 2 kcal/mol range from the best ranked non-native nucleotide. This threshold value

corresponds to a maximum offset of 2 kcal/mol in 90% of the benchmark (STDW model)

where the offset is defined as the difference between the best-ranked pose whatever the nu-

cleotide type and the best-ranked pose for the nucleotide corresponding to the native ligand

(Supplementary Fig. 7). Predictions that do not satisfy these criteria are considered as poor.

2.5 Molecular Features

The molecular features are analyzed on a subset of the benchmark corresponding to the 17

protein-nucleotide complexes that do not generate any prediction in the Top-10 without any

distinction from the model and patch. We consider that a given feature has a significant

impact on the prediction when it is found associated with the absence of prediction at a

higher frequency than that in the benchmark (Supplementary section: Molecular features,

Supplementary Table 1).

The volume calculation of the binding site is performed using the PyVOL python pack-

age.64 PyVOL is used with the pocket corresponding to the nucleotide-binding site as input

(coordinates of the nucleotide ligand of interest). The threshold value to discriminate be-

tween high or low binding volume is set to 635Å3 which is the average value of the distribution

(30% high and 70% low). The other molecular features include the number of water molecules

around the nucleotidic ligand, the presence of metals, and the presence of other nucleotidic

ligands (nucleic acid or cofactor) in close vicinity to the binding site. The threshold value

for the number of water molecules between nwat high and low is set to: 6 (nwat.low ≤ 6 &

nwat.high > 6) which is the average value of the distribution (38% high and 62% low).

The interaction features (base contacts, clashes, salt bridge, stacking) are extracted from

the analysis of the binding site54,65 (Supplementary section: Benchmark of 121 protein-

nucleotide complexes, Supplementary Fig. 1).
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3 Results and discussion

Most of the docking methods and their scoring functions have been tested on different

benchmarks. These benchmarks have been designed for some specific families of ligands

including RNA ligands.66–71 However, the RNA-protein benchmarks include large RNAs

(tRNA, rRNA, ribozyme, etc.) where single-stranded RNAs are poorly represented and

mostly present in the context of single-stranded regions connected to double-stranded re-

gions. Building the benchmark from a subset of RBPs binding ssRNAs would select optimal

but also sub-optimal binding sites corresponding to spacer regions with weak contacts with

the protein.52 To avoid such bias, we built a benchmark based on the protein-nucleotide

complexes currently available in the Protein Data Bank (RCSB PDB72). A previous protein-

nucleotide benchmark with 62 complexes was used to evaluate the docking power of three

methods: AutoDock (4.2.3), GOLD (5.1), and MOLSDOCK.73 However, the benchmark

is mostly outdated, with only 40% of complexes with an atomic resolution less than 2.0Å

and thus not representative of the currently available structural data. On the other hand,

the methods were tested under biased conditions: the docked region was restricted to the

native ligand pose (5Å3), and the high-occupancy water molecules of the binding site were

preserved within a rigid receptor.

In this study, we use an updated and representative dataset of high-resolution protein-

nucleotide complexes in which only nucleotide monophosphate ligands, as single-residue

fragments, are included (see section Protein-nucleotide Benchmark & corresponding sec-

tion Protein-nucleotide Benchmark in Methods). While the nucleotide fragments are fully

flexible, the protein structure is considered as a rigid body, but its coordinates may differ

depending on the solvent model. Five different nucleotide fragments that differ at the 5’ ter-

minus in charge and size are evaluated (Fig 3). Four different combined solvent and charge

models (Methods: section MCSS, Fig. 3) are also tested based on an implicit or hybrid (im-

plicit/explicit) solvent representation on an extended binding region (Fig. 1). The results

are analyzed both in terms of docking and screening powers (see Methods, section Dock-
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ing and Screening Powers). The discussion takes into account the potential biases from the

benchmark identified in the detailed analysis of different molecular and energy features (Sup-

plementary Figures 1- 2). Some of those features are altered to some extent by the protocol

used for the preparation of the protein structures: e.g., removal of metal ions, variations in

the volume of the binding site, distribution of water molecules in the binding site (Supple-

mentary Fig. 3), the results are also discussed accordingly. The further analysis of MCSS

parameters and molecular and energy features also reveals situations where the predictions

are more reliable (nucleotide fragment, solvent model, scoring function, binding mode, and

contacts, etc.). Various case studies illustrate the impact of these parameters and features on

the docking and screening powers. This information will be useful for further improvements

of the method in the context of fragment-based approaches.

3.1 Protein-nucleotide Benchmark

The protein-nucleotide benchmark includes a non-redundant set of 121 complexes associated

with 14 different known molecular functions and a wide variety of binding modes (Supplemen-

tary section Benchmark of 121 protein-nucleotide complexes, Supplementary Data-S1). The

selection criteria retained to build the benchmark are detailed in Methods (section Protein-

nucleotide Benchmark). In the perspective of evaluating the docking and screening powers,

we looked at the possible biases associated with either the ligand composition, the binding

site features, as well as those related to the solvent model and scoring function. We will

further use these data in the discussion of the MCSS performances.

The proteins binding AMP are over-represented in PDB with respect to those binding

CMP, GMP, or UMP. The ligand composition in the benchmark is biased accordingly with

72% of AMP-bound complexes; the other complexes are represented in a similar proportion

between 7 to 10% (Fig. 2). Thus, the docking power should also be analyzed in detail by nu-

cleotide type. A series of molecular descriptors compose the features used to characterize the

121 nucleotide-binding sites. These features include standard contacts (closed contacts, H-
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bonds, hydrophobic contacts), nucleic acid-specific contacts (stacking contacts, salt bridges),

and energy-related descriptors (buried fraction of ligand, binding energy score) as described

in the supporting information (Supplementary section Benchmark of 121 protein-nucleotide

complexes, Supplementary Data-S2 & Data-S3). Broad distributions are observed for the

standard contacts (Supplementary Fig. 1).

Only the nucleic acid base moiety allows the chemical distinction between the four nu-

cleotide fragments. For a reliable evaluation of the screening power, the contacts established

by the base moiety should be represented enough in number and frequency because they

determine the selectivity for one specific nucleotide. The decomposition of the contacts

based on the three phosphate, ribose, and base moieties reveals that the base contacts are

slightly more represented. They are still slightly less frequent, especially for the close con-

tacts (Supplementary Fig. 1A-B). In more than 10% of the benchmark (15 protein-nucleotide

complexes), there is no direct base contact suggesting the binding selectivity may be hard to

predict in those cases and would negatively impact the screening power. Nucleic acid-specific

contacts are only represented in about half of the benchmark (Supplementary Fig. 1E-F).

However, the buried fraction of the ligands is more than 50% except in a single case (Supple-

mentary Fig. 1G), indicating that the nucleotide generally binds in some well-defined cavity

as shown in the 2D diagrams of the binding sites (Supplementary section Benchmark of 121

protein-nucleotide complexes, Supplementary Data-S4).

The decomposition of the contacts per nucleotide type shows there is also a bias towards

AMP, which is the nucleotide with almost ten times more contacts than the other nucleotides,

although the contact profile (i.e., the proportion of different kinds of contacts) is similar

between the four nucleotides (Supplementary Fig. 2). Thus, we may expect AMP binding

to be easier to predict, i.e., to provide better performance in docking and screening powers.

The docking power, in particular, depends on both the quality of sampling and scoring.

A baseline for the default MCSS scoring function ("SCAL" model) was established on the

benchmark after minimization of the ligand by re-insertion within the optimized binding
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site and calculating its score (Supplementary Fig. 1H). The decomposition of the MCSS

score into its different contributions (see Methods, equation 1) shows that the van der Waals

contribution dominates. Although the conformational penalty is the minor contribution

(mean value of 5.5 kcal/mol), it is still significant. It stresses the importance of evaluating this

term properly with respect to the other contributions, given that nucleotides are very flexible

(six torsion angles in nucleotide fragments). For that, a good sampling is also required.

In traditional fragment-based approaches, it is recommended to use small fragments

which are easier to sample.74 Large fragments such as nucleotides have many degrees of

freedom, also making computational sampling more difficult. Only a unique standard nu-

cleotide conformation is used in MCSS while the benchmark include a large diversity of

bound conformations (Supplementary section MCSS, Supplementary Fig. 4). Thus, the

sampling should be efficient to identify bound conformations that deviate from the standard

(unbound) conformation, such as syn conformations found in 10% of the benchmark where

the base orientation is opposite from the standard anti conformation. On the other hand, the

contributions to the MCSS score should be well-balanced, e.g., the conformational penalty

should not be under or over-estimated to guarantee accurate predictions.

All the high-resolution protein-nucleotide complexes of the benchmark include water

molecules around the protein surface and the binding region. The ligand and water molecules

were removed in the "SCAL" model, leading to some distortions of the binding sites after

minimization. In the other solvent models where the crystallized water molecules were in-

cluded, the original experimental coordinates were more preserved: 0.5Å versus 1.0Å (Sup-

plementary Fig. 3A). However, other artifacts associated with the water molecules also exist

(Supplementary Fig. 3B). The minimization does induce displacements in the position of

the water molecules in the binding region mostly due to the removal of the ligand leading to

variations in their number and distribution (Fig. 3B-C). All the mentioned biases and issues

will be addressed in the comparison of the docking and screening powers for the different

solvent models.
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3.2 Models and poses

The identification of native poses, according to standard criteria (see Methods, section Dock-

ing and Screening Powers), depends primarily on the number of generated poses and the

quality of the sampling. The first MCSS parameters evaluated are the nucleotide fragments:

R010 to R410 (Fig. 1). Since their charge and size differ, they are evaluated in combina-

tion with the different solvent models. The raw distributions generally include up to several

thousands of poses. The total number of poses generated depends mostly on the solvent

model and the phosphate patch to a lesser extent. The presence of explicit water molecules

partially reduces the molecular volume accessible for nucleotides in the binding region. Thus,

the number of poses generated with the SCAL model is much larger than that generated with

any of the hybrid solvent models: SCALW, FULLW, and STDW (Fig. 4). The comparison

of the raw and clustered distributions also shows that the SCAL model exhibits the higher

redundancy in the generated poses demonstrated by the larger difference between the raw

and clustered distributions for each patch.

Although the electrostatic contribution is not the major contribution in the default scor-

ing function with an implicit solvent model (Supplementary Fig. 2), it has a significant impact

on the number of generated poses. Both the charge and the dielectric model have to be con-

sidered. In the SCAL model based on a distance-dependent dielectric, the observed trend is

the more negative the charge on the phosphate group (from R110 to R010, R210/R310, and

R410), the higher the number of generated poses except for the more charged patch R410

(Fig. 4). The more charged the phosphate group is, the higher the electrostatic contribution,

and the more likely the pose can pass the energy threshold value of the MCSS score. The

R210 and R310 patches give equivalent results with the same net charge on the phosphate

group. On the other hand, a too highly charged phosphate group (R410) may also produce

unfavorable interactions with negative charges at the protein surface. In the other hybrid

models, the trend is not dominated by the charge but rather by the fragment’s size. The

larger the patch is (from R110 to R010, R410, R210, and R310), the lower the number of
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generated poses, and the lower accessible volume, as mentioned above. The models based on

a distance-dependent dielectric, SCALW and STDW, also follow this trend given that R210

and R410 only differ by a proton. In the particular case of the constant dielectric model

FULLW, both the charge and size effects explain why R410 is not on the lines with the other

patches (Fig. 4).

Figure 4: Boxplot representation of the number of poses generated for the 121 protein-
nucleotide complexes for each 5’ patched nucleotide (010, 110, 210, 310, 410). Results for
raw (R) and clustered (C) distributions are shown.
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Figure 5: Boxplot representation of the fraction of native poses generated for the 121 protein-
nucleotide complexes for each 5’ patched nucleotide (010, 110, 210, 310, 410). Results for
raw (R) and clustered (C) distributions are shown.

The fraction of native poses over the entire MCSS distribution for all solvent models and

patches is shown in Figure 5. This fraction is similar for all patches in each of the four

models, except for R310. The patch R310 carries a methyl group in one of the phosphate

oxygen. This group confers the ability to establish more hydrophobic contacts than other

patches. The SCAL model shows a significantly lower fraction of native poses than solvated

models despite a much larger number of generated poses (Fig. 4). As for the number of poses,
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the raw and clustered distributions are more scattered in the absence of water molecules. In

solvated models, the fractions of native poses for SCALW and STDW are very similar. On

the other hand, the FULLW model has more cases where no native pose is found, as seen

by the displacement to zero of the first interquartile section for the boxplots (Fig. 4).

Figure 6: Stacked histogram representation of the Top-i ranked native poses generated for
the 121 protein-nucleotide complexes for each nucleotide patch. Result on raw (upper) and
clustered (bottom) distributions are shown.

3.3 Docking power

The performance in docking power is evaluated on all models and patches using the standard

metrics based on the native poses found in the Top-1 to Top-100 scores with the intermediate

ranks: Top-5, Top-10, and Top-50 (see Methods, section Docking and Screening Powers).

The best performances are obtained with the SCALW and STDW models whatever the

patch used (Fig. 6). The STDW model slightly outranks the SCALW model in the Top-1

and Top-10 for all the patches (except for R310 where the performance is equivalent for

the Top 10), while the performance is pretty similar for the Top-50 and Top-100. The best
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performance is obtained for the patch R310 with a success rate of 45% in the Top 1, a bit

more than 60% for the Top 10, and more than 80% in the Top-100. However, the gain in

performance with respect to the other patches is tiny in Top-10 and Top-50. The clustering

does not change the general trends observed in the raw distributions, but it slightly increases

the performance in the Top-100 and, to a lesser extent, the lower Top-i .

The better performance of hybrid solvent models SCALW and STDW over the SCAL

implicit model is partly due to the conformational penalty term (Equation 1) corresponding

to the deformation of the fragment from its optimal conformation. Although this term is

generally a minor contribution, it may vary depending on the nonbonded model. We can

compare the torsion angles observed in the MCSS minima to the known ideal values and

values observed in the native bound conformations of the nucleotides from the benchmark

(Supplementary section MCSS, Supplementary Fig. 4). The absence of water molecules in

the SCAL model reveals a few biases where, for example, the syn conformation is more

populated than expected as compared with the experimental or the ideal values collected

from the experimental structures of nucleic acids.75,76 The SCALW model is also biased,

and the STDW but to a lesser extent; only the FULLW model is exempted. Another

common bias in models (except for the FULLW model) is the over-representation of the

C2’-endo conformation for the ribose while the initial conformation is always a C3’-endo

conformation. It is partly due to the nonbonded model and the absence of a full solvation

of the ribose moiety. In FULLW, the C3’-endo/C2’-endo representation is more balanced.

Still, the phosphodiester backbone (torsion angles α and β) deviates from the optimal values

because of some distortion of the phosphate group, which is highly charged and tend to

stick closely to the protein surface in the absence of any screening effect (constant dielectric

model).

Implicit solvent models such as MM-GB models28,29 have been applied to the rescoring of

MCSS minima. A few other scoring functions also provide good performances in the CASF

challenges.14,15 Six alternative scoring functions have been selected, two of them correspond
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to MM-GB models (see Methods, section Docking and Screening Powers). The results show

that the standard MCSS scoring function corresponding to the SCAL model (MCSS-SCAL)

has a similar performance than Vina, slightly below that of ∆vinaRF20 (Fig. 7). The Vinardo

scoring function performs slightly better than both MCSS-SCAL or ∆vinaRF20. The other

three scoring functions (ITscorePR, MM-GBSW, MM-GBMV) have a low performance. The

clustering protocol (see Methods, section Clustering) improves the performance of MCSS-

SCAL slightly exceeding that of Vina or ∆vinaRF20 (Supplementary section: Scoring, Sup-

plementary Fig. 5).
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Figure 7: Docking powers (top1 to top100) for Vinardo, MCSS, ∆vinaRF20, Vina, ITscorePR,
MM-GBMV, and MM-GBSW using the patch R310. The two MM-GB models use the
molecular mechanics terms from CHARMM (MCSS with "SCAL" model) and the solvation
contribution from the respective Generalized Born models implemented in CHARMM (see
Methods, section Docking and Screening Powers).

The MCSS scoring function associated with the STDW model still outperforms all of the

alternative scoring functions in the Top-1 to Top-10 in both raw and clustered distributions

(Fig. 6). In the CASF-2016 benchmark, the docking power ranges from around 30% to
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90% for a variety of scoring functions.15 The docking power is around 90% for both Vina

and ∆vinaRF20. On the current benchmark, their performance is only 33%, indicating the

challenging task to score charged ligands such as nucleotides. Vinardo performs slightly

better (42%) and also MCSS-STDW (45%).

Because of the composition bias in the benchmark, the performance was then analyzed by

nucleotide type. Since the adenosine is over-represented in the benchmark, the performance

for that specific nucleotide generally follows the global trend described above (Fig. 8). How-

ever, the performance for guanosine decreases for the larger patches R210 to R410, whatever

the model used. Only the smaller patches R010 and R110 give a similar performance or

better in some cases; the success rate with R110 is even better from Top-1 to Top-50, indi-

cating the existence, as discussed before, of a size effect that drives down the performance

(guanine is slightly more voluminous than adenine). Consistently, the performance generally

improves for pyrimidines (C or U), which are smaller than purines. On the other hand, the

performance is degraded in the smaller nucleoside fragments (R110) that do not carry any

phosphate group (uncharged). The pyrimidic nucleotides are better predicted, especially

for the two best models SCALW and STDW with R310. The predictions are equivalent

or degraded for the more highly charged patch R410, especially with U. The analysis of

the clustered distributions confirms the observed trends of the raw distributions, with im-

proved performances reaching 90% to 100% for the Top-100 in a larger number of models

and patches (Supplementary Fig. 6).

3.4 Screening Power

In the benchmark, we assume that the crystallized nucleotide is always the native and more

specific nucleotide, i.e., it is the only nucleotide ligand with a detectable affinity or the best

binder among the four nucleotides. Based on this assumption, we can define a screening

power as the ability to rank the native nucleotide ahead of the other three nucleotides. In

that case, we will refer to optimal predictions as the native pose is identified, and the native
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Figure 8: Nucleotide decomposition of the success rates obtained for each solvent model and
patch. The data are shown for the raw distribution (without clustering) and each Top-i .
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nucleotide is ranked first. The other predictions are considered poor predictions even if

native poses are found for the native nucleotide. As an illustration, we show the results

obtained for one protein-nucleotide complex (PDB ID: 1KTG) for both SCAL and STDW

models (Fig. 9).

Figure 9: Binding selectivity predictions for 1KTG. Left: SCAL model (R310); right: STDW
model (R310); the interval of MCSS scores corresponding to a 2 kcal/mol range is indicated
by the green bar. Each Top-i for i > 1 is represented by a single point that corresponds to
the average RMSD and score of all its members.

The best-ranked nucleotide is the native one (A) in the STDW model; other poses of

the native nucleotide are also identified (Top-5, Top-10, etc.), but only one is within the

2 kcal/mol score range (good prediction). Some of the poses corresponding to non-native

G nucleotides are within the MCSS score range of 2 kcal/mol. In the STDW model, the

prediction is optimal since the best-ranked pose does correspond to the native nucleotide.

In the SCAL model, the pose with the best score corresponds to a non-native G nucleotide,

but the Top-1 for the native nucleotide is within the 2 kcal/mol range; it is not considered
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as an optimal prediction but as a good prediction. The other poses for the native nucleotide,

which lie out of the 2 kcal/mol range (Top-5, Top-10, etc.), correspond to poor predictions.

The analysis of the results is focused on the comparison between the standard SCAL

model (without explicit solvent) and the hybrid STDW model with the R310 patch. The

STDW model shows a significant gain of performance with explicit water molecules (Fig. 10).

In the optimal predictions, the STDW outperforms by 15 to more than 30% from the Top-1

to Top-100, respectively. In all Top-i , the STDW optimal predictions always exceed the

SCAL total predictions. Moreover, the ratio of optimal/good predictions is always much

higher in STDW (Fig. 10). The docking power determines in part the magnitude of the

screening power, i.e., the more native poses, the more likely the native nucleotide is well

ranked and associated with an optimal or good prediction. Considering only the cases

where both models generate at least one native pose in the respective Top-i , we exclude the

contribution of the docking power to the screening power (Supplementary Fig. 8). These

results show that the STDW model still has a better screening power, indicating that the

hybrid solvent model can intrinsically better discriminate the native nucleotide from the

non-native ones. The analysis of the score distributions by nucleotide type suggests that the

reason for the better screening power of STDW lies in a scoring bias. In the SCAL model,

purines that are composed of more atoms are slightly better scored than pyrimidines (C or

U) with a preference for G over A nucleotides (Supplementary Fig. 9).

In contrast, A nucleotides are better scored in the STDW model while the other three

nucleotides have similar distributions. Another difference is the much more extensive range of

scores for all four nucleotides. The more favorable scoring of A is consistent with more tightly

binding modes, a known bias of the benchmark as mentioned previously (Supplementary

Fig. 2). Moreover, the nucleotide decomposition of the screening power shows no significant

difference in performance between A and the other three nucleotides, although it is slightly

better in the Top-100 (Supplementary Fig. 10). Thus, the absence of any apparent bias in

the STDW scoring makes its more efficient in terms of screening power. The main difference
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between the SCAL and STDW models is the presence of explicit water molecules that leads

to increased performances in the sampling and scoring.

Figure 10: Binding Selectivity Predictions. Optimal: native nucleotide as the best ranked;
good: native nucleotide ranked within a 2 kcal/mol range from the best ranked non-native
nucleotide; poor: native nucleotide ranked out of the 2 kcal/mol range.

3.5 Molecular features

To better understand the role of solvent and other molecular properties associated directly

or indirectly with water molecules, we define a series of representative features for nucleotide

ligands. Then, we determine the relationships between these features and the lack of pre-

diction, which are represented by logic diagrams (Upset plots). We classify the features into

three main groups related to:
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1. The binding site properties (volume, number of water molecules, presence of metals, pres-

ence of other nucleotidic fragments).

2. The conformational properties (purine/pyrimidine, syn/anti).

3. The interaction properties (contacts, clashes, stacking, salt bridges). Whether a feature

is statistically significant or not is determined by its relative frequency in the subset of the

benchmark with no prediction (see Methods, section Molecular Features).

The only binding site feature that correlates significantly with the absence of prediction

is a low volume of the binding site (Fig. 11A), as calculated by PyVOL64 (see Methods,

section Molecular Features). On the contrary, a low number of water molecules within the

binding site is not particularly detrimental. Metal ions usually stabilize the phosphate group

and occupy some volume in the binding site (it is correlated with a low volume of the binding

site and a low number of water molecules). Although it is removed from each protein target,

its absence in the calculations is not particularly detrimental either.

Among the conformational features, none is an impacting feature (Supplementary sec-

tion: Molecular features, Supplementary Fig. 11). It is noteworthy that the syn conformation

is not associated with the lack of prediction (Supplementary Table 1) while the initial con-

formation of all nucleotides is anti, confirming the quality of the MCSS sampling. On the

other hand, three interaction features are negatively impacting the performance: the ab-

sence of salt bridges, the presence of clashes with water molecules, and to a lesser extent,

the absence of stacking contact (Fig. 11B). Among these latter contacts, the π-π interactions

are those which more contribute to the negative impact on the predictions (Supplementary

Fig. 12). The presence of clashes with water molecules might induce some distortions within

the binding site during the protein target’s preparation.

If we focus on the non-predicted cases specific to the STDW model with the R310 patch,

the observations described above remain valid with very similar trends for all the molecular

features (Supplementary section: Molecular features, Supplementary Table 2). Nevertheless,

the syn conformations are slightly more frequent in the no-prediction cases (Supplementary
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Table 2), indicating a less efficient sampling for the larger R310 patch in size. In the non-

optimal predictions which fail to score the native nucleotide as the best ranked (i.e., good

predictions, Fig. 10), similar trends are again observed but with two specificities associated

with the metals and stacking contacts (Supplementary section: Molecular features, Supple-

mentary Table 3). First, metals’ presence negatively impacts the performance suggesting

that metals contribute directly or indirectly to the nucleotide selectivity. Second, the ab-

sence of stacking contacts makes it more challenging to score the native nucleotide properly;

the binding selectivity of purines versus pyrimidines, in particular, can be easier to identify

in the presence of stacking contacts.

As described above, a low volume of the binding site is detrimental per se to the predic-

tion performance. Once the experimental structure is optimized after removal of the ligand

(metal and the water molecules in the SCAL model), the volume can sometimes undergo

large variations: either decreasing or increasing (Supplementary section: Molecular features,

Supplementary Fig. 13). The average variation shrinks the binding site by 27 to 30Å3 for

the SCAL and STDW models, respectively. In two-thirds of the benchmark, the binding site

shrinks by an average of 87 (SCAL) to 92Å3 (STDW). In one-third of the benchmark, the

binding site expands by an average of 92 (STDW) to 95Å3 (SCAL). Thus, a similar trend

of variations is observed for both SCAL and STDW models. However, only the STDW is

significantly impacted in the performance for the prediction of the Top-10 (Supplementary

section: Molecular features, Supplementary Table 4); the shrinking of the binding site com-

bined with the presence of water molecules prevents the identification of any native pose in

the Top-10 in the concerned cases. This is confirmed by the fact that 9 of the 17 proteins

in the subset with no predictions in the Top-10 exhibit recovered predictions in the upper

Top-i with a smaller patch such as R110 (Supplementary section: Molecular features, Sup-

plementary Table 5). In six other cases, the absence of predictions with the STDW model

can be imputed to the presence of water molecules (Supplementary Table 5). Finally, only

two cases do not provide any prediction in the Top-i .

32



A

B

29

18

13
12

8
7

6
5

4
3

2 2 2 2

0

10

20

30

In
te

rs
ec

tio
n 

Si
ze

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

vol.low

nwat.low

metals

no.pred

others

   

020406080
Set Size

18

9

8 8

6 6

5 5

2 2 2 2 2 2 2 2 2 2 2 2

0

5

10

15

20

In
te

rs
ec

tio
n 

Si
ze

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

no.stacking

no.salt.bridges

clash_w

clash_aa

no.pred

no.base.contacts

   

0204060
Set Size

Figure 11: Upset diagrams of the impact of molecular features on the Top-10 predictions. A.
binding site features. B. interaction features. The intersections with only one member are not
shown; others: presence of additional nucleotidic (nucleic acid) fragment in the binsing site;
no.pred: no prediction; metals: presence of metal(s) in the binding site; nwat.low: presence
of number of water molecules below the threshold value; vol.low: volume of the binding
site below the threshold value; no.base.contacts: absence of contacts with the nucleic acid
base; clash_aa: clash(es) with amino-acid residues; clash_w: clash(es) with water molecules;
no.salt.bridges: absence of salt-bridge; no.stacking: absence of stacking.
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3.6 Case Studies

The analysis of the molecular features that impact the docking and screening powers shows

that different factors are responsible for the general lack of performance of all the solvent

models and, more specifically, that of the purely implicit SCAL model. We illustrate the

impacting features through a series of case studies, looking particularly at those contributing

to the improved performance of the hybrid models, including explicit water molecules. We

refer to each case using the PDB ID. Since all protein-nucleotide complexes in the benchmark

include crystallized water molecules, we should expect that the water-mediated contacts will

be detrimental to the SCAL model. Indeed, the presence of water contacts involving the

base or the phosphate group has a powerful impact (Supplementary Fig. 14).

In the 1S68 case where the native nucleotide is A, a single water molecule and only one

is involved in two close contacts with the nucleotide (Fig. 12). These two water-mediated

contacts involve the Watson-Crick face of the adenine. The SCAL model does not provide

any prediction within the Top-100 for any nucleotide (Fig. 12A). A few native-like poses

exist, but they are not ranked within the Top-100, i.e., their MCSS score is higher than

any of the first 100 non-native poses (Fig. 12B,D-E). On the contrary, the STDW model

generates several native-like poses within the Top-1, Top-5, and Top-50 corresponding to

optimal and good predictions for the native nucleotide (Fig. 12A,C,E-F). Excluding the

water-mediated contact with the base, all the other native contacts are found in the native-

like poses for both models (Fig. 12D-F). Both water molecules and the solvent model used

are responsible for the differential scoring between the two models even if the water molecules

are not considered in the scoring (see Methods, section MCSS). In all the native-like poses

in both SCAL and STDW models, the syn conformation of the nucleotide is preferred (or

a high-syn conformation). However, the starting conformation in the initial distributions is

C3’-endo anti. It is indicative that the ligand’s flexibility allows to switch from anti to syn

during the MCSS calculations without any hindrance.

In the SCAL model, the best-ranked poses for the native nucleotide (Top-1 to Top-10)
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Figure 12: Case Study 1S68. A. Schematic representation of the nucleotide selectivity in
the SCAL (left) and STDW (right) models; B. 3D representation of the native-like pose for
the SCAL model (128th scored pose); C. 3D representation of the native-like pose for the
STDW model (Top-1); D. Diagram of the binding site and nucleotide contacts for the SCAL
model (see B); E. Diagram of the binding site and nucleotide contacts for the native binding
mode; F. Diagram of the binding site and nucleotide contacts for the STDW model (see C);
G. 3D representation of the native-like pose for the SCAL model (Top-1); H. Diagram of the
binding site and nucleotide contacts for the SCAL model (see G).
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exhibit alternative positionings of the phosphate groups; it interacts closely on the opposite

side of the binding site with residues Lys35, Asn40, and Arg55 instead of Lys35, Lys225,

and Lys227 (Fig. 12G-H). Although the net charge is reduced by two-thirds in the SCAL

model (but not in the STDW model), the absence of explicit solvation around the phosphate

group leads to an alternate positioning of the nucleotide (Fig. 12H), which is incompatible

with the native binding mode. 1S68 is associated with a low volume of the binding site, a

feature that impacts the performance negatively (Fig. 11A). Furthermore, the binding site is

shrunk for both models and slightly more pronounced for the SCAL model (Supplementary

section: Molecular features, Supplementary Fig. 13).

The 3EWY case is peculiar with a pyrimidic ligand: U, which adopts a syn conformation.

Both models exhibit a similar performance with predicting the U native nucleotide (Fig. 13).

However, the native contacts are better reproduced by the SCAL model (Fig. 13A-B,E-F)

and only the 10th pose reproduces all the native contacts with the residues of the binding

site in the STDW model (Fig. 13A,D,F-G). Besides, several non-native nucleotides have very

similar MCSS scores: A in the case of the SCAL model, G in the case of the STDW model.

There is no global shrinking of the binding site in the protein structures optimized with or

without water molecules in the case of 3EWY (Supplementary section: Molecular features,

Supplementary Fig. 13). However, there is a local contraction in some parts of the binding

site, which is not equivalent between the two models. It is more pronounced on the Hoogsteen

and Watson-Crick faces of the base in STDW, making it more challenging to reproduce the

native contacts with the base (Fig. 13C). On the other hand, non-native nucleotides can fit

into the remodeled binding site with scores that are within the 2 kcal/mol range from the

native one (Fig. 14). The native contacts which are specific to the base are lost in the case

of A with the SCAL model (Fig. 14A-B,D), but native-like and isosteric contacts are found

in the case of G with the STDW model (Fig. 14C,E-F).

In the 2XBU case, the cavity of the binding site is well conserved in the SCAL model

but slightly shrunk in the STDW model (Supplementary section: Molecular features, Sup-
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Figure 13: Case Study 3EWY. A. Schematic representation of the nucleotide selectivity in
the SCAL (left) and STDW (right) models; B. 3D representation of the Top-1 native pose
for the SCAL model; C. 3D representation of the native ligand in the binding site as seen:
in the experimental structure (grey), in the optimized structure without water molecules
(magenta), in the optimized structure with water molecules (blue); D. 3D representation of
the Top-10 native pose for the STDW model; E. Diagram of the binding site and nucleotide
contacts for the SCAL model (see B); F. Diagram of the binding site and nucleotide contacts
for the native binding mode; G. Diagram of the binding site and nucleotide contacts for the
STDW model (see D).
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Figure 14: Case Study 3EWY. A. Schematic representation of the nucleotide selectivity
in the SCAL (left) and STDW (right) models; B. 3D representation of the Top-1 native-
like pose for A (syn conformation) in the SCAL model; C. 3D representation of the Top-1
native-like pose for G (anti conformation) in the STDW model; D. Diagram of the binding
site and nucleotide contacts for the SCAL model (see B); F. Diagram of the binding site
and nucleotide contacts for the native binding mode; G. Diagram of the binding site and
nucleotide contacts for the STDW model (see C).
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plementary Fig. 13). The binding site’s volume is low because it is quite open with only the

base moiety within a well-defined cavity. Only the STDW model provides a good predic-

tion (Top-5) while the native poses generated by the SCAL model are all over the Top-100

scores (Fig. 15A). The first poses in the STDW model (Top-1 to Top-4) are all located in

the binding site. However, their RMSD is over 2 and are thus excluded from the native

poses. Independent of the scores, the native poses reproduce the native contacts with the

base in both models (Fig. 15B-G). The phosphate group establishes very close contacts with

hydrogen-bond donors from the peptide backbone, but those contacts are not retrieved in

the native poses except for one residue (Thr115). The presence of a terminal methyl group

in the phosphate patch used: R310 (Fig. 1 and Fig. 3) prevents a native positioning of the

phosphate group. In the SCAL model, its positioning is more in agreement with the exper-

imental structure (Fig. 15E-F). However, the Top-1 pose and the other best-scored poses

are completely off-site (Fig. 16). Combined with the shrinking of the binding site, the large

phosphate group largely deviates from the expected position in the STDW model, and the

only contact with Thr115 is weaker. This deviation on the phosphate group increases the

global RMSD of the pose to the native coordinates and leads to exclude the Top-1 to Top-4

G poses from the list of native poses (Fig. 16). However, the Top-4 G pose reproduces almost

all the native contacts (Fig. 16C,E-F).

4 Conclusions

MCSS was evaluated for the docking of nucleotides on a benchmark of 121 protein com-

plexes. Different solvent and phosphate models were tested to optimize the success rate for

identifying native poses (docking power) and the true native nucleotide (screening power).

As a result, the STDW model appears to give the best performance slightly ahead of the

SCALW model based on partially reduced charges on the phosphate group. A clustering

procedure was set up that allows a slight increase of the success rates, especially in the high
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Figure 15: Case Study 2XBU. A. Schematic representation of the nucleotide selectivity in
the SCAL (left) and STDW (right) models; B. 3D representation of a native-like pose for
G in the SCAL model (169th scored pose); C. 3D representation of the native ligand in the
binding site as seen: in the experimental structure (grey), in the optimized structure without
water molecules (magenta), in the optimized structure with water molecules (blue); D. 3D
representation of a native-like pose for G in the STDW model (Top-50, 12th scored pose); E.
Diagram of the binding site and nucleotide contacts for the SCAL model (see B); F. Diagram
of the binding site and nucleotide contacts for the native binding mode; G. Diagram of the
binding site and nucleotide contacts for the STDW model (see D).
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Figure 16: Case Study 2XBU. A. Schematic representation of the nucleotide selectivity in
the SCAL (left) and STDW (right) models; B. 3D representation of Top-1 pose for G in
the SCAL model; C. 3D representation of Top-4 pose for G in the STDW model (RMSD
> 2.0); D. Diagram of the binding site and nucleotide contacts for the SCAL model (see
B); E. Diagram of the binding site and nucleotide contacts for the native binding mode; F.
Diagram of the binding site and nucleotide contacts for the STDW model (see C).
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Top-i (Top-50 and Top-100). Among the different phosphate models, the more voluminous

one that carries a terminal methyl group: R310, is slightly better in the Top-1 predictions.

It is also the phosphate model that facilitates the linking of nucleotide fragments in the per-

spective of fragment-based design of oligonucleotides (unpublished data52). The combined

STDW-R310 model outperforms despite the few cases where the lack of predictions in the

Top-10 could be correlated to a size effect that prevents the phosphate group from fitting

correctly in the binding site. The size effect is reinforced by the shrinking of the binding

site due to the removal of the ligand and other bound molecules or metals from the protein

target. The presence of water molecules in the preparation and optimization of the protein

structure allows the minimized structure to deviate less from the experimental structure.

On the other hand, the water molecules generally induce a more pronounced shrinking of

the binding site with respect to the experimental structure, which is responsible for some

degradation of the performance. The inclusion of water molecules gives a more realistic

description of the binding site, whether they are involved in water-mediated contacts with

the ligand or just solvating the phosphate group or ribose.

We have identified some pitfalls that contribute to degrade the performance of prediction

in all models. From the intrinsic features of the binding site, a low binding volume is the

more impacting factor. It can be seen as a low accessible volume for close contacts that

typically occurs when the binding site is open with few contacts with the ligand or when

the close contacts are only present in some part of the nucleotide (small binding cavities).

Among the conformational features, the syn conformation does not have any negative im-

pact although the docking is performed using an initial C3’-endo anti conformation. This

observation confirms that the flexibility of the ligand during the docking allows a proper

conformational sampling even if it is a bit less efficient with the R310 patch due to some

size effect. Among the interaction features, the presence of salt bridges makes it a bit easier

to get good predictions. On the other hand, the presence of clashes with water molecules in

the experimental structure has a slight negative impact. More specific to the STDW-R310
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model, the negative effect of the low binding volume is smoothed.

The quality of the scoring explains, to some extent, the better performance of the hybrid

model STDW over the implicit model SCAL. First of all, the SCAL model includes a slight

bias in the scoring, favoring G over A and the other nucleotides, while A is the nucleotide

from the benchmark that establishes the stronger contacts in the binding site. Furthermore,

the STDW model based on the original parameters from the CHARMM forcefield describes

better, in the presence of water molecules, the bonded contributions associated with the

torsion angles. Thus, the penalty term of the MCSS score from the conformational distortions

of the bound ligand is more accurate. The STDW model outperforms not only in docking

power with more predictions but also in screening power. The STDW model has a much

stronger discriminatory power between very similar ligands. It is also consistent with the

broader range of score distributions for each type of nucleotide. The native poses scored as

optimal reproduce most (if not all) of the native contacts as well as the good predictions,

although they are not ranked first among the four nucleotides.

Both free and bound conformations for the same protein are not available on a large set of

3D structures with nucleotide ligands. Thus, the protein targets correspond to some unbound

forms where the ligands were extracted from the binding site. Consequently, the optimized

binding site is usually shrunk, making the identification of native poses and native binders

more challenging. The method’s performance is then degraded both in terms of docking

and screening powers because of missing native contacts in the shrunk areas of the binding

sites. The four standard nucleotides are very similar from the chemical viewpoint and thus

harder to discriminate in terms of binding selectivity. Chemical modifications would increase

the dissimilarity between nucleotidic fragments, which would likely be easier to discriminate.

The absence of stacking interactions, one of the impacting feature, makes the prediction more

difficult. So, we may also expect that modified nucleotides favoring stacking interactions will

be more accurately predicted. Many modified nucleotides are already used experimentally

in the synthesis of oligonucleotides77 or modified aptamers46 for medical or biotechnological
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applications to improve specific properties such as the therapeutic index.78

From the perspective of designing oligonucleotides, MCSS provides a good performance

to predict native poses (docking power) and identify the binding selectivity of nucleotidic

fragments (screening power). The MCSS-STDW model provides the best performance for

the docking power in Top-1 and Top-100 with the R310 patch that generates the lowest

pose redundancy. Using this large patch may lower the performance in particular cases

due to some size effect (e.g., tight binding site). However, the R310 patch increases the

performance of the linking strategy (data not published52). The molecular features analysis

indicates we should optimize the binding volume with tight contacts such as salt bridges or

stacking interactions. More accurate or full descriptions of the solvent open the possibility of

further improving the docking and screening powers. Other improvements may come from

using more relevant (unbound) and more diverse (active) conformations of the protein target

to avoid the biases associated with possible distortions of the binding site (e.g., shrinking).

Finally, increasing the chemical diversity of the nucleotidic fragments should help find a

better molecular complementarity with the target; at the same time, we expect that the

evaluation of the binding selectivity will be more accurate for modified nucleotides.
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Supporting Information Available

Benchmark of 121 protein-nucleotide complexes

1. Attached Supplementary Data 1 (Data-S1.csv): a list of PDB IDs including the ligand

ID, the atomic resolution, functional classification, and EC number.

2. Attached Supplementary Data 2 (Data-S2.csv): calculations of the BINANA features

(number of contacts, number of H-bonds, the buried fraction of ligand, etc)

3. Attached Supplementary Data 3 (Data-S3.csv): calculations of the NACCESS surface

terms for the fraction of buried surface of the ligand

4. Attached Supplementary Data 4 (Data-S4.tar.gz): 2D diagrams of the contacts within

the binding sites (SVG format).

54



A-1 A-2

B-1 B-2

C-1 C-2

D-1 D-2

C
ou

nt
s

0

5

10

15

20

25

Number of contacts
50 100 150 200 250

all
phosphate
ribose
base

D
en

si
ty

0

0,5

1,0

1,5

2,0

2,5

Number of contacts
−50 0 50 100 150 200 250 300

C
ou

nt
s

0

5

10

15

Number of close contacts
0 5 10 15 20 25

all
phosphate
ribose
base

D
en

si
ty

0

5

10

15

20

25

Number of close contacts
−5 0 5 10 15 20 25 30

C
ou

nt
s

0

5

10

15

Number of H-bonds
−2 0 2 4 6 8 10 12 14 16

all
phosphate
ribose
base

D
en

si
ty

0

5

10

15

20

25

30

35

Number of H-bonds
0 5 10 15

C
ou

nt
s

0

5

10

15

Number of C-C contacts
0 10 20 30 40

all
phosphate
ribose
base

D
en

si
ty

0

5

10

15

Number of C-C contacts
−10 0 10 20 30 40 50

Supplementary Figure 1: Molecular and energy features of the nucleotide-binding sites from
the benchmark of 121 complexes. A-1.: Histogram of the number of contacts; A-2: Smooth
histogram with decomposition per nucleotide moiety (base, ribose, phosphate); B-1.: His-
togram of the number of close contacts; B-2.: Same as A-2 for close contacts; C-1.: Histogram
of the number of H-bonds; C-2.: Same as A-2 for H-bonds; D-1.: Histogram of the number
of C-C contacts; D-2.: Same as A-2 for C-C contacts; (to be continued).
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Supplementary Figure 1: Molecular and energy features of the nucleotide-binding sites from
the benchmark of 121 complexes (continued). E-1.: Histogram of the number of stacking
contacts; E-2.: Smooth histogram with decomposition per stacking types; F.: Histogram
of the number of salt-bridges; G.: Histogram of the buried fraction of ligand (calculated
from the solvent accessible surface); H-1.: Histogram of the MCSS scores calculated for
the ligands optimized in their binding site; H-2.: Smooth histogram with decomposition per
contribution types (electrostatics, van der Waals, conformational). The molecular descriptors
associated with the atomic contacts are calculated by BINANA;54 the stacking contributions
are calculated from OpenEye;65 the MCSS score is calculated by the scoring function derived
previously.30
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Supplementary Figure 2: Nucleotide breakdown of atomic contacts. Top-left: all contacts;
top-right: specific contacts (C-C contacts, close contacts, Hbonds, stacking contacts, salt-
bridges); bottom: ratio of each type of specific contacts. The number of contacts correspond
to the average value over the full benchmark.
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X-ray structure
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Supplementary Figure 3: Distributions of water molecules and impact on the binding sites.
A-1.: Histogram of RMSD in presence/absence of water molecules; A-2.: Same as A-1 with a
smooth histogram; B-1.: the number of water molecules around the ligand (distance cutoff of
4.0Å); B-2.: Same as B-1 with decomposition per nucleotide moiety; C-1.: Number of water
molecules within the binding site as defined in MCSS by the box parameters (see Methods);
C-2.: displacements (Å) of water molecules from their crystallized positions.
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MCSS

5. Attached Supplementary Data 5: MCSS input sample (Data-S5.txt)

6. Attached Supplementary Data 6: MCSS nonbonded parameters sample (Data-S6.txt)

7. Attached Supplementary Data 7 (Data-S7.csv): MCSS score (including its VdW and

elec terms) and RMSD values for each protein-nucleotide complex
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A

B

C

D

Supplementary Figure 4: Torsions angles. Nonbonded models and associated patches (R010
to R410): A. SCAL, B. FULLW, C. SCALW, D. STDW. In blue: the distribution of the
torsions angles observed in the MCSS minima; In red: the distribution of the torsions angles
observed in the bound ligands.
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Scoring

Autodock Vina is a well-known docking method used for virtual screening; the associ-

ated scoring function is pretty robust, having regularly been used in the comparative

assessment of scoring functions (CASF) challenges.14 Vinardo and ∆vinaRF20 were both

derived from Vina and tested in the CASF-2013 challenge. Vinardo was optimized and

validated on large datasets.61 It was tested in particular on the DUD library that con-

tains, among other proteins, kinases with nucleotide ligands or nucleotide analogs.11

∆vinaRF20 was derived more recently from Vina with a new parametrization based on

random forest. The performance of ∆vinaRF20 was superior to that of Vina when tested

on the CASF-2007 and CASF-2013 challenges benchmarks. Finally, ITscorePR was in-

cluded since it has been specifically developed for protein-RNA interactions. The scores

calculated with all the scoring functions: ITscorePR,62 ∆vinaRF20,63 Autodock Vina

score,60 Vinardo,61 and the MM-GB models (see Methods) except MCSS30 correspond

to single-point calculations on the MCSS-generated poses.

8. Attached Supplementary Data 8 (Data-S8.tar.gz): selectivity diagrams SCAL/STDW

for the native poses for each protein-nucleotide complex of the benchmark.
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Supplementary Figure 5: Docking powers (top1 to top100) for Vinardo, MCSS, ∆vinaRF20,
Vina, and ITscorePR and the impact of the clustering filtering (using the patch R310). Left
bar (R): no clustering; Right bar (C): clustering.
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Supplementary Figure 6: Decomposition of docking powers per nucleotide type. The data
are shown for the clustered distribution and each Top-i .
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Supplementary Figure 7: Scoring differences (offset) between the best-ranked pose whatever
the nucleotide type and the best-ranked pose for the nucleotide corresponding to the native
ligand. Top: STDW model; bottom: SCAL model. The color code indicates the nucleotide
type.
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Supplementary Figure 8: Screening powers on the benchmark subset corresponding to the
predictions common to the SCAL and STW models. Optimal: native nucleotide as the best
ranked; good: native nucleotide in the ranked within a 2 kcal/mol range from the best ranked
non-native nucleotide; poor: native nucleotide ranked out of the 2 kcal/mol range.
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Supplementary Figure 9: Distributions of the nucleotide-dependent MCSS score for the
SCAL or STDW models (R310).
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Supplementary Figure 10: Decomposition of screening powers per nucleotide type. Optimal:
native nucleotide as the best ranked; good: native nucleotide in the ranked within a 2
kcal/mol range from the best ranked non-native nucleotide; poor: native nucleotide ranked
out of the 2 kcal/mol range. 67



Molecular features

Supplementary Table 1: Frequencies of occurences for molecular features in the Top-10 non-
predicted cases versus benchmark. Others: presence of additional nucleotidic (nucleic acid)
fragment in the binsing site; metals: presence of metal(s) in the binding site; nwat.low:
presence of number of water molecules below the threshold value; vol.low: volume of the
binding site below the threshold value; syn: syn conformation of the nucleic acid base; pyr:
pyrimidine; pur: purine; no.base.contacts: absence of contacts with the nucleic acid base;
clash_aa: clash(es) with amino-acid residues; clash_w: clash(es) with water molecules;
no.salt.bridges: absence of salt-bridge; no.stacking: absence of stacking.

Features Freq. Benchmark Freq. no.pred

binding site

nwat.low 62 59
vol.low 69 82
others 12 6
metals 36 24

conformational
syn 12 0
pur 79 71
pyr 21 23

interaction

no.base.contacts 12 12
no.salt.bridges 44 59
no.stacking 49 53
clash aa 22 18
clash w 33 41
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Supplementary Figure 11: Upset diagram of the impact of the conformational features on
the Top-10 predictions. The intersections with only one member are not shown; syn: syn
conformation of the nucleic acid base; pyr: pyrimidine; pur: purine.
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Supplementary Figure 12: Upset diagram of stacking contributions for the Top-10 pre-
dictions. no.pp_satcking: no π-π stacking; no.pi.cat_stacking: no π-cation stacking;
no.t_stacking: no t stacking.
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Supplementary Table 2: Frequencies of occurences for molecular features in the Top-10
for non-predicted cases of STDW-310 versus benchmark. Others: presence of additional
nucleotidic (nucleic acid) fragment in the binsing site; metals: presence of metal(s) in the
binding site; nwat.low: presence of number of water molecules below the threshold value;
vol.low: volume of the binding site below the threshold value; syn: syn conformation of the
nucleic acid base; pyr: pyrimidine; pur: purine; no.base.contacts: absence of contacts with
the nucleic acid base; clash_aa: clash(es) with amino-acid residues; clash_w: clash(es) with
water molecules; no.salt.bridges: absence of salt-bridge; no.stacking: absence of stacking.

Features Freq. Benchmark Freq. STDW(R310)

binding site

nwat.low 62 51
vol.low 69 72
others 12 6
metals 36 30

conformational
syn 12 17
pur 79 83
pyr 21 17

interaction

no.base.contacts 12 11
no.salt.bridges 44 62
no.stacking 49 49
clash aa 22 21
clash w 33 40

Supplementary Table 3: Frequencies of occurences for molecular features in the Top-10 for
non-optimal (good) predictions. Others: presence of additional nucleotidic (nucleic acid)
fragment in the binsing site; metals: presence of metal(s) in the binding site; nwat.low:
presence of number of water molecules below the threshold value; vol.low: volume of the
binding site below the threshold value; syn: syn conformation of the nucleic acid base; pyr:
pyrimidine; pur: purine; no.base.contacts: absence of contacts with the nucleic acid base;
clash_aa: clash(es) with amino-acid residues; clash_w: clash(es) with water molecules;
no.salt.bridges: absence of salt-bridge; no.stacking: absence of stacking.

Features Freq. Benchmark Freq. good

binding site

nwat.low 62 60
vol.low 69 70
others 12 10
metals 36 60

conformational
syn 12 0
pur 79 80
pyr 21 0

interaction

no.base.contacts 12 30
no.salt.bridges 44 30
no.stacking 49 70
clash aa 22 20
clash w 33 40

70



Supplementary Table 4: Variations in the binding site’s volume for the subset of protein-
nucleotides complexes with no prediction in the Top-10. The volume of reference corresponds
to that of the experimental structure; the modified volumes are calculated for both the
SCAL and STDW models. Only the cases where the variation equals or exceeds 100Å3 are
considered. UP: increase of the binding site’s volume. DOWN: decrease of the binding site’s
volume.

Volumes Freq. Benchmark Freq. nopred.

SCAL UP 12 0
DOWN 19 18

STDW UP 13 0
DOWN 21 35
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9. Attached Supplementary Data 9 (Data-S9.txt): raw data corresponding to the number

of water molecules around the ligand at a distance up to 4Å.

10. Attached Supplementary Data 10 (Data-S10.csv): raw data corresponding to the varia-

tions of the binding site’s volume for each protein of the benchmark in three conditions:

experimental, SCAL, and STDW models.
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Supplementary Figure 13: Variations in the volume of the binding site. Black line: experi-
mental structure; Blue line: optimized structure for the SCAL model; Red line: optimized
structure for the STDW model. The histograms indicate a decreasing of the volume for the
negative values and an increasing for the positive values. The calculation of volume does not
take into account the water molecules.
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Supplementary Table 5: Impact of the nonbonded model and phosphate patch on the re-
covery effect of the Top-10 no-prediction subset. Y: recovered prediction using a different
model and patch; N: no recovered prediction with the given model and patch.

stdw-R110 scal-R310 scal-R110
1rao Y
1wxi Y
1xtt Y
2g1u Y
2xbu Y
2xwm N Y
3gru N N N
3m84 Y
3nua N N Y
3omf Y
3sf0 N Y
4eei N Y
4ijn N Y
4zfn Y
5ed3 Y
5jda N Y
5v0i N N N

73



24

17

11

10

8

7

6

4

3 3 3 3 3 3 3

2 2 2

1 1 1 1 1 1 1

0

10

20

In
te

rs
ec

tio
n 

S
iz

e

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

water.p

stdw

water.ribose

water.base

not.scal

   

0255075100
Set Size

Supplementary Figure 14: Upset diagram of water-mediated contacts for the Top-10 predic-
tions. not.scal: no prediction with the SCAL model; stdw: predictions with STDW model;
water.base: presence of water-mediated contacts with the nucleic acid base; water.ribose:
presence of water-mediated contacts with the ribose; water.p presence of water-mediated
contacts with the phosphate group.

11. Attached Supplementary Data 11 (Data-S11.csv): raw data corresponding to the

molecular features associated with the Top-10 predictions.
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