Invertible Flow Non Equilibrium sampling - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2021

Invertible Flow Non Equilibrium sampling

Résumé

Simultaneously sampling from a complex distribution with intractable normalizing constant and approximating expectations under this distribution is a notoriously challenging problem. We introduce a novel scheme, Invertible Flow Non Equilibrium Sampling (InFine), which departs from classical Sequential Monte Carlo (SMC) and Markov chain Monte Carlo (MCMC) approaches. InFine constructs unbiased estimators of expectations and in particular of normalizing constants by combining the orbits of a deterministic transform started from random initializations. When this transform is chosen as an appropriate integrator of a conformal Hamiltonian system, these orbits are optimization paths. InFine is also naturally suited to design new MCMC sampling schemes by selecting samples on the optimization paths. Additionally, InFine can be used to construct an Evidence Lower Bound (ELBO) leading to a new class of Variational AutoEncoders (VAE).
Fichier principal
Vignette du fichier
infine_arxiv.pdf (2.94 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03168489 , version 1 (13-03-2021)
hal-03168489 , version 2 (20-08-2021)

Identifiants

Citer

Achille Thin, Yazid Janati, Sylvain Le Corff, Charles Ollion, Arnaud Doucet, et al.. Invertible Flow Non Equilibrium sampling. 2021. ⟨hal-03168489v1⟩
648 Consultations
252 Téléchargements

Altmetric

Partager

More