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oCeremade, Université Paris-Dauphine & Department of Statistics, University of Warwick.

Abstract
Simultaneously sampling from a complex distribution with intractable normalizing constant and ap-

proximating expectations under this distribution is a notoriously challenging problem. We introduce a
novel scheme, Invertible Flow Non Equilibrium Sampling (InFiNE), which departs from classical Se-
quential Monte Carlo (SMC) and Markov chain Monte Carlo (MCMC) approaches. InFiNE constructs
unbiased estimators of expectations and in particular of normalizing constants by combining the orbits of
a deterministic transform started from random initializations. When this transform is chosen as an appro-
priate integrator of a conformal Hamiltonian system, these orbits are optimization paths. InFiNE is also
naturally suited to design new MCMC sampling schemes by selecting samples on the optimization paths.
Additionally, InFiNE can be used to construct an Evidence Lower Bound (ELBO) leading to a new class
of Variational AutoEncoders (VAE).

1 Introduction
Simulation from a challenging distribution π(x) ∝ ρ(x)L(x) and approximation of its intractable normaliz-
ing constant Z =

∫
ρ(x)L(x)dx remains a significant issue for generative models and Bayesian inference.

In a Bayesian setting, ρ is a prior distribution and L is the likelihood. In Generative Adversarial Networks
(GAN) Turner et al. (2019); Che et al. (2020), ρ is the generator and L is derived from the discrimina-
tor. This problem has attracted wealth of contributions; see for example Chen et al. (2000). Simulation
approaches rarely rely on output from the target, since it either produces unreliable substitutes, as in the
discredited harmonic mean estimator of Newton and Raftery (1994) or difficulties of implementation as in
path sampling Gelman and Meng (1998) and nested sampling Skilling (2006); Chopin and Robert (2010).
Many approaches are based on Importance Sampling (IS) techniques, the most popular being Annealed Im-
portance Sampling (AIS) Neal (2001); Wu et al. (2016); Ding and Freedman (2019) and Sequential Monte
Carlo (SMC) Del Moral et al. (2006). Many contributions about the estimation of normalizing constants
have been devoted to use as an importance distribution the push-forward T# ρ of a base probability ρ by
an invertible map T; see among others Jarzynski (2002); Meng and Schilling (2002); Neal (2005); Cuen-
det (2006); Procacci et al. (2006). More recently, it has been proposed to select the parameters of such a
map so as to minimize the ‘mode seeking’ Kullback–Leibler (KL) divergence between T# ρ and π; see
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e.g. El Moselhy and Marzouk (2012); Müller et al. (2019); Papamakarios et al. (2019); Prangle (2019);
Wirnsberger et al. (2020). In high-dimension, these approaches can provide an importance distribution T# ρ
which ”covers” only a part of the support of ρ and therefore lead to ill-behaved importance weights. Finally,
other proposals have focused solely on the normalizing constant approximation, as in Chib (1995) or the an-
tagonistic solutions of Geyer (1993); Gutmann and Hyvärinen (2012). When these estimates are unbiased,
they can be used to obtain ELBO to design Variational Auto-Encoders (VAE) Mnih and Rezende (2017).

Rotskoff and Vanden-Eijnden (2019) have introduced a new Non-Equilibrium IS (NEIS) method. It is
inspired by Hamiltonian Monte Carlo (HMC) techniques in the sense that proposals are sampled from an
Hamiltonian flow. However, contrary to ”classical” HMC, a friction term is added, hence does not leave
the Hamiltonian invariant. The NEIS estimator of the normalizing constant cannot be computed exactly
as the theory relies on the integration of the conformal Hamiltonian flow. In practical implementations, a
discretization is required and induces approximation errors.1

We propose in this work a new (discrete-time) Invertible Flow Non Equilibrium IS estimator for Z,
named InFiNE, that circumvents the issues of the original estimator of Rotskoff and Vanden-Eijnden (2019).
InFiNE method relies on iterated calls to a map T : Rd → Rd. When T is a discrete-time approximation of
a conformal Hamiltonian integrator Franca et al. (2019), InFiNE constructs an estimate of the normalizing
constant with optimization paths from random starting points. Moreover, contrary to NEIS, the InFiNE es-
timator is unbiased under assumptions that are mild and easy to verify. Finally, InFiNE lends itself well
to massive parallelization. As illustrated in our numerical experiments, InFiNE improves the efficiency
of state-of-the-art methods in a various set of experiments. In Section 4, we present different domains of
applications for InFiNE that demonstrate its generality and the reach of its efficiency.

Our contributions can be summarized as follows:

(i) We introduce a novel IS estimator, InFiNE, which builds and relies on optimization paths to estimate
efficiently normalizing constants. In our numerical experiments, InFiNE is shown to be competitive
with state-of-the-art methods.

(ii) We show how InFiNE can be used to develop a novel class of Variational Auto-Encoders (VAE).

(iii) We present new MCMC samplers that build upon InFiNE. This leads to massively parallel sampling
methods obtained by selecting points on optimization paths started at random positions.

2 Invertible Flow Non Equilibrium Importance Sampling
In the spirit of the above, we thus consider a pdf ρ on Rd, along with a C1-diffeomorphism T : Rd → Rd.
Write, for k ∈ N∗, Tk = T ◦Tk−1, T0 = Idd and similarly T−k = T−1 ◦T−(k−1). Assume T is measure-
preserving for ρ, meaning that when X has distribution ρ, for all k ∈ Z, Tk(X) has also distribution ρ.
Then, for an arbitrary nonnegative sequence ($k)k∈Z such that

∑
k∈Z$k = 1,

N−1
∑
k∈Z

$k

N∑
i=1

f(Tk(Xi)) , (Xi)1≤i≤N
iid∼ ρ

is an unbiased estimate of
∫
f(x)ρ(x)dx. It further enjoys a smaller variance than the Monte Carlo estimator

N−1
∑N
i=1 f(Xi).

1As done in the code provided by Rotskoff and Vanden-Eijnden (2019), while the impact of the discretization on the bias is not
addressed in the paper.

2



Invertible Flow Non Equilibrium sampling

InFiNE generalizes this construction to an arbitrary invertible flow T, tailored to move the samplesX1:N

towards regions with important contribution to the computation of
∫
f(x)ρ(x)dx. All proofs associated with

this section are postponed to Appendix A of the supplementary material.

2.1 Integration using non-equilibrium paths
Let O be the support of fρ. In the applications below, our transformation T is defined on O. Thus, in the
case where O 6= Rd, this motivates the introduction of an estimator based on sequences supported in O.
Although we focus on applications where O = Rd below, important extensions of our work discussed at the
end of this section require O 6= Rd. Define the following exit times τ+ : Rd → N and τ− : Rd → N−,
given, for all x ∈ Rd, by

τ+(x) = inf{k ≥ 1 : Tk(x) 6∈ O} , (1)

τ−(x) = sup{k ≤ −1 : Tk(x) 6∈ O} , (2)

with the convention inf ∅ = +∞ and sup ∅ = −∞, and

I = {(x, k) ∈ O× Z : k ∈ [τ−(x) + 1 : τ+(x)− 1]} . (3)

For any k ∈ Z, define ρk : Rd → R+ by

ρk(x) = ρ(T−k(x))JT−k(x)1I(x,−k) , (4)

where JΦ(x) ∈ R+ denotes the Jacobian of Φ : Rd → Rd evaluated at x. The density ρk is the push-forward
measure of 1I(x, k)ρ(x) by Tk, i.e. for any k ∈ Z and f : Rd → R,∫

f(y)ρk(y)dy =

∫
f(Tk(x))1I(x, k)ρ(x)dx . (5)

When (x, k) ∈ I for any x ∈ O and any 1 ≤ k ≤ K, a crucial identity is∫
f(y)ρ(y)dy =

∫
f(Tk(x))ρ(Tk(x))|JTk(x)|dx

=

∫
f(Tk(x))

ρ(Tk(x))

ρk(Tk(x))
ρ(x)dx .

If X1:N iid∼ ρ, this suggests to improve the basic Monte Carlo estimator by the still unbiased estimator

1

(K + 1)N

N∑
i=1

K∑
k=0

f(Tk(Xi))
ρ(Tk(Xi))

ρk(Tk(Xi))
, (6)

obtained by averaging over flows Tk, towards turning the dominating measure into a T invariant one as in
Kong et al. (2003).

InFiNE estimators exploit the above identity by computing the average of the K + 1 measures ρk,
0 ≤ k ≤ K, in the general case when (x, k) /∈ I for some values of (x, k). More precisely, in line with
multiple importance sampling à la Owen and Zhou (2000), we introduce the pdf

ρT(x) = Z−1
T

∑K

k=0
ρk(x) , (7)
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where ZT is the normalizing constant. This is a non-equilibrium distribution, since ρT is not invariant by
T in general. Using ρT as an importance distribution to obtain an unbiased estimator of

∫
f(x)ρ(x)dx is

feasible since it shares the same support as ρ, hence∫
f(x)ρ(x)dx =

∫ (
f(x)

ρ(x)

ρT(x)

)
ρT(x)dx .

From (5), the right hand side can be computed using the following key result whose proof is postponed to
the supplementary material.

Theorem 1. For any f : Rd → R, we have∫
f(x)ρ(x)dx =

∫∑K

k=0
f(Tk(x))wk(x)ρ(x)dx , (8)

where, with the convention 0/0 = 0,

wk(x) = ρ(Tk(x))1I(x, k)/[ZTρT(Tk(x))] . (9)

Note that ZTρT(Tk(x)) simplifies and the normalizing constant ZT does not appear in the right-hand
side of (9). A naive implementation would require O(K2) complexity per sample, however a linear O(K)
estimator can be derived thanks to the following result.

Lemma 2. For any x ∈ Rd and k ∈ {0, . . . ,K},

wk(x) = ρ−k(x)

/∑K−k

j=−k
ρj(x) . (10)

By Lemma 2, the weights wk are also upper bounded uniformly in x: for any x ∈ Rd, wk(x) ≤ 1.
From (25) and Lemma 2, the InFiNE estimator of

∫
f(x)ρ(x)dx is defined in Algorithm 1. Contrary to

Algorithm 1 InFiNE method

(1) Sample Xi iid∼ ρ for i ∈ [N ].

(2) For i ∈ [N ], compute the path (Tj(Xi))Kj=0 and weights (wj(X
i))Kj=0.

(3) IInFiNE
N (f) = 1

N

∑N
i=1

∑K
k=0 wk(Xi)f(Tk(Xi)).

self normalized IS versions, we stress that IInFiNE
N (f) remains unbiased despite the ratio appearing in the

expression (10) of the weights.

Theorem 3. IInFiNE
N (f) is an unbiased estimator of

∫
f(x)ρ(x)dx.

Remark 1. We have chosen here to focus on multiple importance sampling to forward in time pushforwards
{ρk}Kk=0. The same construction holds if we consider both backward and forward pushforwards {ρk}Kk=−K .
If we take formally K = ∞ in (7), then ρT becomes invariant with respect to T. In this case, this becomes
the discrete-time counterpart of the algorithm proposed in Rotskoff and Vanden-Eijnden (2019). In this
particular case, we can write for k ∈ Z, x ∈ Rd,

wk(x) = ρ−k(x)
/∑+∞

j=−∞
ρj(x) ,
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in which case the weights are exactly self-normalized, and

IInFiNE
N (f) = N−1

N∑
i=1

+∞∑
k=−∞

wk(Xi)f(Tk(Xi)) .

However, choosing K = +∞ requires additional assumptions on the stopping times and the measures ρk.

Remark 2. We can extend InFiNE to non homogeneous flows, replacing the family {Tk : k ∈ Z} with a
collection of mappings {Tk : k ∈ Z}. This would allow us to consider further flexible classes of transforma-
tions such as normalizing flows Papamakarios et al. (2019). However, we focus in the following on a single
operator that targets the optima of fρ, and leave this extension to future work.

Remark 3. In the case where ρ is an uniform distribution on the set O, IInFiNE
N (f) offers some similarity

with the Nested Sampling estimator Skilling (2006). In particular, it can then be rewritten with stopping
times on each of the energy level sets on O, building on the stopping times introduced at the beginning of
this section and the Nested Sampling identity; see (Chopin and Robert, 2010, Section 2). We develop this
remark in the supplementary material.

2.2 Conformal Hamiltonian transformation
We now return to the challenging target density π(x) = L(x)ρ(x)/Z, where the normalizing constant Z is
intractable. By applying Algorithm 1 to the test function L, an unbiased estimator of Z is derived as

ẐXi =
∑K

k=0
L(Tk(Xi))wk(Xi) (11)

ẐX1:N =
∑N

i=1
ẐXi

/
N . (12)

The efficiency of such an estimator relies heavily on the choice of T. Intuitively, a sensible choice of T
requires that (i) T is able to drive samples to regions which contributes strongly to the computation of Z (aka
regions where the likelihood L is high) and (ii) the Jacobian of T is cheap to compute. These constraints
naturally lead to use a conformal Hamiltonian dynamics, as suggested in Rotskoff and Vanden-Eijnden
(2019). Assume that U(·) = log π(·) is continuously differentiable. We consider an extended distribution
π̃(q, p) ∝ exp{−U(q)−K(p)} on R2d, whereK : p 7→ pTM−1p/2, with M a positive definite mass matrix.
Note that π is the marginal of π̃. In this setting, q ∈ Rd is the position and U(q) is the potential energy,
while p ∈ Rd is the momentum and K(p) is the kinetic energy, by analogy with physics. The conformal
Hamiltonian ODE associated with π̃ is defined by

dqt/dt = ∇pH(qt, pt) = M−1pt , (13)
dpt/dt = −∇qH(qt, pt)− γpt = −∇U(qt)− γpt ,

where H(q, p) = U(q) +K(p), and γ > 0 is a damping constant. Any solution (qt, pt)t≥0 of (13) satisfies
dH/dt(qt, pt) = −γpTt M−1pt ≤ 0. Hence, all orbits converge to fixed points that satisfy ∇U(q) = 0 and
p = 0; see e.g. Franca et al. (2019); Maddison et al. (2018).

In the applications below, we consider the conformal version of the symplectic Euler method of (13), see
Franca et al. (2019). This integrator can be constructed as a splitting of the two conformal and conservative
parts of the system (13). When composing a dissipative with a symplectic operator, we set for all (q, p) ∈
R2dn, Th(q, p) to be

(q + hM−1{e−hγp− h∇U(q)}, e−hγp− h∇U(q)) ,
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Figure 1: Conformal Hamiltonian paths for different values of the dissipation parameters for a mixture of
two Gaussian distributions given different Hamiltonian parameters. From left to right, γ increasing from 0
to 0.3, 2 and 4.

where h > 0 is a discretization stepsize. This transformation can be connected with classical momentum
optimization schemes, see (Franca et al., 2019, Section 4). By (Franca et al., 2019, Section 3), for any h > 0
Th is a C1-diffeomorphism on R2d with Jacobian given by JTh(q, p) = e−γhd. In addition, its inverse
is T−1

h (q, p) = (q − hM−1p, eγh{p + h∇U(q − hM−1p)}). Therefore, the weight (10) of the InFiNE
estimator is given by

wk(q, p) =
ρ̃(Tkh(q, p))e−γkhd∑k

j=k−K ρ̃(Tjh(q, p))e−γjhd
, (14)

where ρ̃(q, p) ∝ ρ(q)e−K(p). In the applications below, M is chosen as a diagonal matrix with positive
entries, see the discussion in Section 5.1.

3 InFiNE-based MCMC
We describe here novel MCMC algorithms that leverage the InFiNE method to sample from π.

To motivate our sampler, let us recall the principle of the Sampling Importance Resampling method (SIR;
Rubin (1987); Smith and Gelfand (1992)) whose goal is to approximately sample from the target distribution
π using samples drawn from a proposal distribution ρ.

In SIR, a N -i.i.d. sample X1:N is first generated from the proposal distribution ρ. A sample X∗ is
approximately drawn from the target π by choosing randomly a value inX1:N with probabilities proportional
to the importance weights {w̃(Xi)}Ni=1, where w̃(x) = π(x)/ρ(x). Note that the importance weights are
required to be known only up to a constant factor. For SIR, as N → ∞, the sample X∗ is asymptotically
distributed according to π; see Smith and Gelfand (1992). Two major drawbacks of SIR are that it is
only asymptotically valid and that the number N of proposals should typically grow exponentially with the
dimension d of the state-space to maintain a given accuracy.

A subsequent algorithm is the iterated SIR (ISIR) Andrieu et al. (2010). In this version, the sample
size N is not necessarily large (N ≥ 2), but the whole process of sampling a set of proposals, computing
the importance weights, and picking a candidate, is iterated. At the n-th step of ISIR, the active set of
N proposals X1:N

n and the index In ∈ [N ] of the conditioning proposal are kept. First ISIR updates the
active set by settingXIn

n+1 = XIn
n (keep the conditioning proposal) and then draw independentlyX1:N\{In}

n+1

from ρ. Then it selects the next proposal index In+1 ∈ [N ] by sampling with probability proportional
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to {w̃(Xi
n+1)}Ni=1. As shown in Andrieu et al. (2010), this algorithm defines a partially collapsed Gibbs

sampler (PCG) of the augmented distribution (see Appendix B.2)

π̄(x1:N , i) =
1

N
π(xi)

∏
j 6=i

ρ(xj) =
1

N
w̃(xi)

N∏
j=1

ρ(xj) .

The PCG sampler can be shown to be ergodic provided that ρ and π are continuous and ρ is positive on
the support of π. If in addition the importance weights are bounded, the Gibbs sampler can be shown to be
uniformly geometrically ergodic Lindsten et al. (2015); Andrieu et al. (2018). It follows that the distribution
of the conditioning proposal X∗n = XIn

n converges to π as the iteration index n goes to infinity. Indeed, for
any integrable function f on Rd, with (X1:N , I) ∼ π̄,

E[f(XI)] =

∫ N∑
i=1

f(xi)π̄(x1:N , i)dx1:N = N−1
N∑
i=1

∫
f(xi)π(xi)dxi =

∫
f(x)π(x)dx .

When the state space dimension d increases, designing a proposal distribution ρ guaranteeing proper mixing
properties becomes more and more difficult. A way to circumvent this problem is to use dependent proposals,
allowing in particular local moves around the conditioning path. To implement this idea, for each i ∈ [N ],
we define a proposal transition, ri(xi;x1:N\{i}) which defines the the conditional distribution of X1:N\{i}

given Xi = xi. The key property validating ISIR with dependent proposals (see Appendix B.2) is that all
one-dimensional marginal distributions are equal to ρ, which requires that for each i, j ∈ [N ],

ρ(xi)ri(x
i;x1:N\{i}) = ρ(xj)rj(x

j ;x1:N\{j}) (15)

The (unconditional) joint distribution of the particles is therefore defined as

ρN
(
x1:N

)
= ρ(x1)r1(x1;x1:N\{1}) . (16)

The resulting modification of the ISIR algorithm is straightforward: X1:N\{In} is sampled jointly from the
conditional distribution rIn(XIn

n , ·) rather than independently from ρ.
There are many ways to make proposals dependent. For instance, dependence may be induced by using

a Markov kernel reversible with respect to to the proposal ρ, i.e., such that ρ(x)m(x, x′) = ρ(x′)m(x′, x),
assuming for simplicity that this kernel has densitym(x, x′) Ruiz et al. (2020). In this case, for each i ∈ [N ],
the conditional proposal kernel is

ri(x
i, x1:N\{i}) =

i−1∏
j=1

m(xj+1, xj)

n∏
j=i+1

m(xj−1, xj) . (17)

A straightforward induction shows that (15) is satisfied and that the joint distribution of the particles (see
(38) is given by ρN (x1:N ) = ρ(xi)

∏N
j=2m(xj−1, xj). If ρ is Gaussian, an appropriate choice is an autore-

gressive kernel m(x, x′) = φd(x
′;αx,

√
1− α2 Idd), where φd(x;µ,Σ) is the d-dimensional Gaussian pdf

with mean µ and covariance Σ as in Ruiz et al. (2020). More generally, we can use a Metropolis-Hastings
kernel with invariant distribution ρ.

We now propose the InFiNE MCMC sampler which extends the ISIR algorithm to InFiNE construction.
The input for the n-th iteration comprises an active set of N path initial states, X1:N , the index 1 ≤ In ≤ N
of the conditioning path, and the iteration index 0 ≤ Kn ≤ K along the conditioning path. Adopting the
ISIR protocol, our sampler proceeds as follows.
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1. Set XIn
n+1 = XIn

n and draw the remaining proposals X1:N\{In}
n+1 ∼ rIn(XIn , ·).

2. For each initial value Xi
n+1, i ∈ [N ], compute the iterates {Tk(Xi

n+1)}Kk=1.

3. Draw the path index In+1 ∈ [N ] with probability proportional to (ẐXin+1
)i∈[N ], with ẐXin+1

defined
in (11).

4. Draw the next iteration index 0 ≤ Kn+1 ≤ K on the conditioning path with probability proportional
to

wk(X
In+1

n+1 )L(Tk(X
In+1

n+1 )) .

Similar to ISIR, InFiNE MCMC is a partially collapsed Gibbs sampler targeting the extended pdf (see
Appendix B.3)

π̄(x1:N , i, k)

= wk(xi)L(Tk(xi)ρ(xi)ri(x
i;x1:N\{i})

/
NZ

= wk(xi)L(Tk(xi))ρN (x1:N )
/
NZ . (18)

whose marginal distribution satisfies

π̄(x1:N , i) =
1

NZ
Ẑxiρ(xi)ri(x

i;x1:N\{i}) .

Under mild conditions (see Appendix B.4), this PCG sampler is ergodic, hence the distributions of the
iterates (X1:N

n , In,Kn) and of their projections X∗n = TKn(XIn
n ) converge to π̄ and to π, respectively.

Indeed, for any integrable function f on Rd, with (X1:N , I,K) ∼ π̄,

E[f(TK(XI))] =

N∑
i=1

∫ K∑
k=0

π̄(x1:N , i, k)f(T k(xi))dx1:N

= (NZ)−1
N∑
i=1

∫ K∑
k=0

ρ(xi)wk(xi)L(Tk(xi))f(Tk(xi))dxi

= (NZ)−1
N∑
i=1

∫
ρ(xi)L(xi)f(xi)dxi =

∫
π(y)f(y)dy ,

following Theorem 1. The InFiNE MCMC sampler is thus a valid procedure to generate samples from π.
When the transformation T is chosen as in Section 2.2, our sampler draws samples based on optimization
paths. Detailed experiments are discussed in Section 5.2.

4 ELBO for variational auto-encoders
Given a joint model pθ(y, x), with data y ∈ Rp and latent variable x ∈ Rd, variational inference (VI)
provides us with a tool to both approximate the intractable posterior pθ(x|y) and maximize the marginal
likelihood pθ(y) =

∫
pθ(x, y)dx in the parameter θ. This is achieved by introducing a parameterized ap-

proximate posterior qφ(x|y) and maximizing the Evidence Lower Bound (ELBO) (see Kingma and Welling
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(2019))

LELBO(θ, φ) =

∫
log

(
pθ(x, y)

qφ(x | y)

)
qφ(x | y)dx (19)

= log pθ(y)−KL(qφ(· | y)‖pθ(· | y)) ,

where KL is the Kullback–Leibler divergence. Towards more flexibility, approximate posteriors can be
defined as marginal distributions, qφ(x|y) =

∫
q̄φ(x, u|y)du, where u ∈ U is an auxiliary variable (which

can both have discrete ann dontinuous components) and q̄φ(x, u|y) is a generative closed-form density.
Introducing auxiliary variables loses the tractability of (19) but they allow for their own ELBO as suggested
in Agakov and Barber (2004); Lawson et al. (2019), leading to the objective∫

q̄φ(x, u|y) log

(
p̄θ(x, u, y)

q̄φ(x, u|y)

)
dxdu , (20)

where p̄θ(x, u, y) is an extended joint likelihood satisfying pθ(x, y) =
∫
p̄θ(x, u, y)du (or equivalently

p̄θ(x, u, y) = pθ(x, y)m̄θ(x, y;u) where m̄θ(x, y; ·) is a Markov kernel). We now exploit this idea within
the InFiNE framework. For that purpose, set prior, likelihood, and posterior as ρ(x) = qφ(x | y), L(x) =
pθ(x, y)/qφ(x | y), and π(x) = pθ(x | y), respectively (the dependence of ρ, L, and π on both parameter
(θ, φ) and observation y is implicit for notational simplicity). With these notations, the normalizing constant
of ρ(x)L(x) is then Z = pθ(y). The auxiliary variable u is naturally associated with the extended target π̄
defined in (18) (playing the role of p̄θ), with

(x, u) = ([x, x1:N\{i}], i, k) ,

[x, x1:N\{i}] being a shorthand notation for a N -tuple x1:N with xi = x. An extended proposal playing the
role of q̄φ(x, u|y) is derived from the InFiNE MCMC sampler, i.e.

ρ̄(x1:N , i, k) =
L(Tk(xi))wk(xi)

NẐx1:N

ρN (x1:N ) . (21)

where Ẑx1:N is the InFiNE estimator (12) of the normalizing constant. Note that, by construction,

N∑
i=1

K∑
k=0

ρ̄(x1:N , i, k) = ρN (x1:N ) (22)

showing that this joint proposal can be sampled by drawing the proposals x1:N ∼ ρN , then sampling the path
index i ∈ [N ] with probability proportional to (Ẑxi)

N
i=1 (with Ẑx defined in (11)) and finally the iteration

index k ∈ {0, . . . ,K} with probability proportional to (wk(xi)L(Tk(xi))Kk=0. Since the ratio of (18) over
(21) is

π̄(x1:N , i, k)
/
ρ̄(x1:N , i, k) = Ẑx1:N

/
Z . (23)

The augmented ELBO (20) writes

LInFiNE =

∫
ρN (x1:N ) log Ẑx1:Ndx1:N , (24)

= logZ −KL(ρ̄|π̄) ,

9
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where we have used (22) and that the ratio π̄(x1:N , i, k)
/
ρ̄(x1:N , i, k) does not depend on the path index

i and the proposal index k along the path. When K = 0 and ρN (x1:N ) =
∏
j = 1Nρ(xj), we exactly

retrieve the Importance Weighted AutoEncoder (IWAE); see e.g. Burda et al. (2016) and in particular the
interpretation in Cremer et al. (2017).

Choosing the conformal Hamiltonian introduced in Section 2.2 allows for a family of invertible flows
that depends on the parameter θ which itself is directly linked to the target distribution.

5 Numerical Experiments

5.1 Normalizing constant estimation
We first consider the problem of the estimation of the normalizing constant of Gaussian mixtures in di-
mension d in two different settings. In the first experiment, we consider an (unnormalized) mixture of two
Gaussian distributions, with equal mixing weights. The mean of the two components are set to (1d,−1d),
where 1 = [1, . . . , 1]T and covariance σ2 Id = 0.02. The second target is an unnormalized mixture of 25
d-dimensional Gaussian distributions in dimension d = 10, 20. Each component has the same covariance
assumed to be diagonal with diagonal elements equal to (0.01, 0.01, 0.1, . . . , 0.1). The means are given by
(i, j, 0, . . . , 0) with i, j ∈ {−2, . . . , 2}, see Figure 4. The normalizing constant in this case is 12.5. In both
examples the proposal ρ is chosen to be a d-dimensional Gaussian, with zero mean and diagonal covariance
σ2
ρ Idd, with σ2

ρ = 5. The performance of the InFiNE estimator (12) is first illustrated in this toy problem
for d ∈ {5, 10, 15, 20} and different choices of parameters.

Our approach is compared with a naı̈ve IS estimator using the same proposal ρ. A state-of-the-art
competitor for the estimation of normalizing constants, the AIS estimator of Neal (2001); Tokdar and Kass
(2010) is also included in the comparison. AIS relies on a sequence of target distribution πk(x), 0 ≤ k ≤
K with π0(x) = ρ(x) and πK(x) = π(x). AIS defines an extended target and proposal using MCMC
kernels which are reversible for each linking densities πk; most often, these MCMC kernels use Langevin
or Hamiltonian dynamics; see e.g. Buchholz et al. (2021). Therefore, AIS is directly comparable to the
InFiNE estimator in terms of complexity. We focus here on the impact of the damping factor γ on the
InFiNE estimations. Further investigation on the stepsize h and of the mass matrix M are given in the
supplementary material.

The number of steps K is a proxy of our computational budget (i.e. the number of times our transforma-
tion is applied). The mass matrix M is chosen as the inverse of the covariance of the individual component
of the mixture. Further tuning on this matrix is discussed in the supplementary material. A first intuition on
the role of γ is shown in Figure 1. If γ � 1, then the trajectories are almost Hamiltonian, in which case we
cannot easily explore all modes. On the other hand, if γ � 1, then trajectories are most often attracted by
the “closest” mode. The resulting trade-off is easily observed on Figure 2, which displays the distribution of
the different estimators.

The IS estimator is run with 4 · 105 samples. For the InFiNE estimator, the number of samples is
N = 2 · 104 and the trajectory length is K = 20. The stepsize is set to h = 0.1 for the conformal symplectic
integrator. The number of levels for AIS in the annealing schedule of AIS is set to 200. At each intermediate
temperature, an iteration of HMC is performed with 3 leapfrog steps (the size of leapfrog step is also set to
0.1). The number of gradient computations is therefore equal to 4 · 105 for InFiNE and 6 · 106 for AIS,
which is therefore 10 times more costly.

We further emphasize how the InFiNE estimator compares favorably to the AIS estimator albeit requir-
ing a smaller computational budget.

10
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0
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30 Estimation for each method, d {5, 10} 

IS AIS = 0 = 0.3
                 InFiNE

= 2 = 40
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Figure 2: 1000 independent estimations of the normalizing constant for each algorithm in the toy example:
a mixture of two Gaussian distributions, in dimension 5 (top) and 10 (bottom). The true value is Z = 10
(red line). The figure displays the median (square) and the interquartile range (solid lines) in each case.

The results for the 25-component Gaussian mixture are displayed in Figure 3. In high dimension, the
vanilla IS estimator unsurprisingly fails, since importance weighted estimates have notoriously poor scaling
properties w.r.t. dimension. While AIS predictably improves upon vanilla IS, its performances are rather
unsatisfactory, the estimator showing a very large variance. Regardless of the dimension d, the InFiNE
estimator is better behaved than the AIS estimator, although the computational burden for InFiNE is 10
times smaller.

5.2 MCMC experiments
We focus here on sampling of the 25 Gaussian mixture example introduced in Section 5.1. The dimension is
set to d = 40 and all the mixture components have diagonal covariances 0.01 Idd. We compare the InFiNE

MCMC sampler with dependent proposals, the No-U-Turn Sampler implemented with Pyro library Bingham
et al. (2019), and the ISIR scheme Andrieu et al. (2010, 2018), with correlated proposal.

11



Invertible Flow Non Equilibrium sampling

0 5 10 15 20 25 30

naive
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InFINE 
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Estimation for each method, d {10, 15, 20} 

0 5 10 15 20 25 30

naive

AIS

InFINE 
 = 1.5

Figure 3: 100 independent estimations of the normalizing constant of the Gaussian mixture with 25 compo-
nents in dimension 10 (top) and 20 (bottom) for each algorithm. The true value is Z = 12.5 (red line).

For the InFiNE MCMC, the number of particles is set to N = 10, the length of trajectory is K = 10, the
stepsize of the conformal integrator is h = 0.1, the mass matrix is diagonal with diagonal elements equal to
100. The proposal distribution is zero-mean Gaussian with diagonal covariance 5 Idd. We use the proposal
kernels ri defined in (17) with a random walk Metropolis kernel m with zero-mean Gaussian increment
distribution and covariance 0.01 Id. For the iterated ISIR, we use the same number of proposals N = 10,
proposal distribution ρ and proposal kernels ri as for InFiNE. For NUTS, we use the default parameter (the
mass matrix and stepsizes are adapted).

In Figure 4, the scatter plot of the first two components of the output is displayed. To make a fair
comparison, we use the same wall clock time for all three algorithms. The number of iterations for CISIR,
InFiNE, and NUTS are n = 4 · 106, n = 4 · 105, and n = 5 · 105, respectively.

12



Invertible Flow Non Equilibrium sampling

Figure 4: Empirical 2-D histogram of the 10,000 samples of different algorithms targeting the mixture of
25 Gaussian distributions. Top row, from left to right: samples from the target distribution, correlated ISIR
samples. Bottom row: NUTS samples, InFiNE samples.

Table 1: Negative Log Likelihood estimates for VAE models for different latent space dimensions.
d = 4 d = 8 d = 16 d = 50

model IS InFiNE IS InFiNE IS InFiNE IS InFiNE

VAE 115.01 113.49 97.96 97.64 90.52 90.42 88.22 88.36
IWAE, N = 5 113.33 111.83 97.19 96.61 89.34 89.05 87.49 87.27

IWAE, N = 30 111.92 110.36 96.81 95.94 88.99 88.64 86.97 86.93
InFiNE VAE, K = 3 109.14 107.47 94.50 94.26 89.03 88.92 88.14 88.16
InFiNE VAE, K = 10 110.02 107.90 94.63 94.22 89.71 88.68 88.25 86.95

5.3 VAE experiments
Following Section 4, we propose numerical experiments to illustrate the relevance of InFiNE in the context
of VAEs. We build InFiNE VAE by optimizing directly the ELBO (24) with respect to the parameters (θ, φ)

13
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with a single trajectory. In practice, extending a standard VAE implementation with InFiNE is straightfor-
ward: after sampling the initial position q from the encoder distribution qφ(· | x), an initial moment p is
sampled. The trajectory is then computed, followed by the weights and the ELBO. The reparameterization
trick Kingma and Welling (2013) is used in a similar fashion as the VAE to ensure full differentiability of
the whole architecture, enabling the optimization of all parameters. A full specification of the algorithm is
provided in ??.

We follow the experimental setting of Burda et al. (2016), using the MNIST dataset. Additional exper-
iments on the FashionMNIST dataset are given in Appendix C.2. We compare our InFiNE VAE with a
classical VAE, and IWAE (with N = 5 and N = 30 samples). For each setting, we use exactly the same ar-
chitecture for the encoder and decoder, resulting in the same number of parameters. We followed as much as
possible the implementation details (architecture and optimizer) detailed in Burda et al. (2016). All models
are trained during 200 epochs.

Estimating the loglikelihood After training, VAEs are classically evaluated by computing an estimate of
their negative loglikelihood (NLL) using either IS, the IWAE bound, or AIS Wu et al. (2016). We first show
here how InFiNE competes with those methods for evaluating the NLL of VAEs. Note that the methods
for evaluating VAEs always define a lower bound of the true likelihood (19). We can thus compare two
evaluation methods if one consistently gives lower NLL estimates. Table 1 gives the NLL estimate for the
different models (associated with a different dimension d of the latent variable). In both cases, the importance
distribution is qφ(· | x). We set up the InFiNE estimator with a trajectory of length of K = 10, h = 0.1 and
γ = 2.5 parameters. The InFiNE estimator consistently gives better estimates than the classical IS estimator.

Comparison of the different VAEs Table 1 displays the estimated NLL of all models provided by IS and
the InFiNE method. It is interesting to note here again that InFiNE improves the training of the VAE when
the dimension of the latent space is small to moderate. The relative improvement of InFiNE decreases when
the dimension of the latent space increases, most likely because the mean-field variational distribution is
accurate enough in such cases (this is at least the case for the MNIST dataset). InFiNE VAE has a better
NLL than the VAE across all latent dimensions considered.

The results displayed in this section provide many insights for future research. Improving the NLL esti-
mate in higher dimensions can be linked to the InFiNE hyperparameter tuning, which becomes crucial when
the dimension increases. The optimal scaling of these hyperparameters remains an open (and challenging)
problem left for future research as we aim here at highlighting the applicability of InFiNE in various con-
texts. Also, we have considered only the case N = 1. It is expected that extension to N > 1 (similar to
IWAE) will further improve the results.

A Proofs of Section 2

A.1 Proof of Equation (5)
Let f : Rd → R+ be a measurable function and k ∈ {0, . . . ,K}. Denote ρk(f) =

∫
f(Tk(x))1I(x, k)ρ(x)dx.

Using the change of variable y = Tk(x), and since by definition of the set I, 1O(T−k(y))1I(T
−k(y), k) =
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1O(y)1I(y,−k), we obtain

ρ̃k(f) =

∫
f(y)ρ(T−k(y))1O(T−k(y))1I(T

−k(y), k)|JT−k(y)|dy

=

∫
f(y)ρ(T−k(y))1O(y)1I(y,−k)|JT−k(y)|dy ,

which concludes the proof.

A.2 Proof of Theorem 1
Let f : Rd → R be a measurable function. Since ρk is the pushforward measure of x 7→ ρ(x)1I(x, k) by
Tk,∫

f(x)ρ(x)dx =

∫
f(x)

ρ(x)

ρT(x)
ρT(x)dx

=
1

ZT

K∑
k=0

∫
f(x)

ρ(x)

ρT(x)
ρk(x)dx =

1

ZT

K∑
k=0

∫
f(Tk(x))

ρ(Tk(x))

ρT(Tk(x))
1I(x, k)ρ(x)dx

=

K∑
k=0

∫
f(Tk(x))wk(x)ρ(x)dx .

A.3 Proof of Lemma 2
We need to show that for any x ∈ O, k ∈ {0, . . . ,K}

1I(x, k)

K∑
i=0

ρi(T
k(x)) =

1I(x, k)

|JTk(x)|

K−k∑
j=−k

ρj(x) .

Using the identity |JTi+k(x)| = |JTi(T
k(x))||JTk(x)|, we obtain

1I(x, k)

K∑
i=0

ρi(T
k(x)) =

K∑
i=0

1I(x, k)ρ(Ti(Tk(x)))JTi(T
k(x))1I(T

k(x)), i)

=
1

JTk(x)

K∑
i=0

1I(x, k)ρ(Ti+k(x))JTi+k(x)1I(T
k(x)), i)

=
1

JTk(x)

K−k∑
j=−k

ρ(Tj(x))JTj (x)1I(T
k(x), j − k)1I(x, k)

Note that is (x, k) ∈ I, we have (x, j) ∈ I if and only if (Tk(x), j − k) ∈ I by definition of I (3). Then, we
obtain

1I(T
k(x)), j − k)1I(x, k) = 1I(x, j)1I(x, k)

This concludes the proof.
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B Proofs of Section 3

B.1 Notations
In this section, we use measure theoretic notations. We denote by π and ρ the target and proposal probability
measures. These two probability measures are assumed to have p.d.f. w.r.t. the Lebesgue measure on Rd
denoted by π and ρ in the main article. The central property exploited here is that

π(dx) = ρ(dx)L(x)/Z , (25)

or equivalently, using Radon-Nikodym derivative

dπ

dρ
(x) =

L(x)

Z
. (26)

For k ∈ {0, . . . ,K}, we denote by ρk(dx) the pushforward of ρ(dx)1I(x, k) by Tk, for any nonnegative
measurable function f , and k ∈ N,∫

f(x)ρk(dx) =

∫
f(Tk(x))1I(x, k)ρ(dx) . (27)

If ρ has a density ρ with respect to the Lebesgue measure on Rd, then ρk also has a density with respect to
the Lebesgue measure which is given by (4). With these notations, for k ∈ {0, . . . ,K},

wk(x) =
1

ZT

dρ

dρT
(Tk(x)) , (28)

ρT (dx) =
1

ZT

K∑
k=0

ρk(dx) . (29)

For i ∈ {1, . . . , N}, we denote by Ri(xi,dx1:N\{i}) the condition proposal kernels. Recall that for all
i, j ∈ {1, . . . , N}, we assume that (see (15))

ρ(dxi)Ri(x
i; dx1:N\{i}) = ρ(dxj)Rj(x

j ; dx1:N\{j}) = ρN (dx1:N ) , (30)

where ρN is the joint distribution of the proposals. In words, it means that all the one-dimensional marginal
of ρN (dx1:N ) is ρ(dxi).

B.2 Iterated Sampling Importance Resampling
We first consider a general version of the ISIR algorithm (see Tjelmeland (2004); Andrieu et al. (2010); Ruiz
et al. (2020)) and we show in this section that it is a partially collapsed Gibbs sampler van Dyk and Park
(2008) of the extended distribution, given for i ∈ {1, . . . , N} by

π̄(dx1:N , i,dy) =
1

N
π(dxi)Ri(x

i,dx1:N\{i})δxi(dy) . (31)
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For ease of presentation, we added the selected sample y in the joint distribution. It is straightforward to
establish that the marginal distributions of (31) are given by

π̄(dy) = π(dy) , (32)
π̄(i) = 1/N , i ∈ {1, . . . , N} , (33)

π̄(dx1:N ) =
1

N

N∑
i=1

π(dxi)Ri(x
i; dx1:N\{i}) . (34)

We now compute the conditional distributions and check that

K1(i, y; dx1:N ) = π̄(dx1:N | i, y) = δy(dxi)Ri(x
i,dx1:N\{i}) . (35)

This corresponds exactly to the first step of ISIR, the refreshment of the set of proposals given the condi-
tioning proposal. Indeed, for any nonnegative measurable functions {fj}Nj=1 and g,

1

N

N∑
i′=1

∫ N∏
j=1

1{i}(i
′)fj(x

j)g(y)π̄(dx1:N , i′,dy) =
1

N

∫ N∏
j=1

fj(x
j)g(xi)π(dxi)Ri(x

i; dx1:N\{i})

=
1

N

∫
π(dy)g(y)

∫
δy(dxi)Ri(x

i; dx1:N\{i})

N∏
j=1

fj(x
j) ,

which validates (35). We now establish that the conditional density of i satisfies

K2(x1:n; i) = π̄(i | x1:N ) =
L(xi)∑N
j=1 L(xj)

. (36)

This corresponds to the second step of the ISIR algorithm, in which a proposal index is selected conditional
to the set of proposals. Indeed, for any nonnegative measurable functions {fj}Nj=1,

1

N

∫
π(dxi)Ri(x

i;dx1:N\{i})

N∏
j=1

fj(x
j)

=
1

NZ

∫
L(xi)ρ(dxi)Ri(x

i; dx1:N\{i})

N∏
j=1

fj(x
j)

=
1

NZ

∫
L(xi)ρN (dx1:N )

N∏
j=1

fj(x
j)

=
1

NZ

∫
L(xi)∑N
j=1 L(xj)

N∑
m=1

L(xm)ρ(dxm)Rm(xm; dx1:N\{m})

N∏
j=1

fj(x
j) ,

where we have used (30). We conclude by noting that π(dx) = L(x)ρ(dx)/Z and using (34). We obviously
have, by construction, that the conditional distribution of the auxiliary variable y satisfies

K3(x1:N , i; dy) = π(dy | x1:N , i) = δxi(dy). (37)
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This is the final step of the algorithm: the selection of the conditioning particle (this step is implicit in the
general description of the algorithm in the main text).

The ISIR sampler is a partially collapsed Gibbs sampler. In the first step (35), we use the first full
conditional, where K1 leaves π̄(dx1:N , i,dy) invariant. In a second step, we collapse the distribution with
respect to y. Lastly, K2 leaves the marginal π̄(dx1:n, i) invariant. Therefore,

N∑
i0=1

∫
π̄(dx1:N

0 , i0,dy0)K1(i0, y0; dx1:N
1 )K2(x1:N

1 ; i1) = π̄(dx1:N
1 , i1)

The validity of the PCG follows from the decomposition

π̄(dx1:N
1 , i1)K3(x1:N

1 , i1; dy1) = π̄(dx1:N
1 , i1,dy1) .

B.3 Invariance for InFiNE sampler
Consider the joint proposal distribution, given for all i ∈ {1, . . . , N} and k ∈ {0, . . . ,K} by

π̄(dx1:N , i, k,dy) =
1

NZ
wk(xi)L(Tk(xi))ρ(dxi)Ri(x

i; dx1:N\{i})δTk(xi)(dy) . (38)

For ease of presentation, we introduce here an additional auxiliary variable, denoted by y, which corresponds
to the active sample. We show below that the InFiNE algorithm is a partially collapsed Gibbs sampler; see
van Dyk and Park (2008).

We first prove that for any i ∈ {1, . . . , N} and k ∈ {0, . . . ,K}, the marginal distribution of the variables
(i, k, y) is given by

π̄(i, k, dy) =
1

NZT

dπ

dρT
(y)ρk(dy) . (39)

Note indeed that, if g is a nonnegative measurable function

N∑
i′=1

K∑
k′=0

∫
1{i}(i

′)1{k}(k
′)g(y)π̄(dx1:N , i

′, k′,dy)

=
1

NZ

∫
wk(xi)L(Tk(xi))ρ(dxi)Ri(x

i; dx1:N\{i})g(Tk(xi))

=
1

NZ

∫
wk(xi)L(Tk(xi))ρ(dxi)g(Tk(xi)) .

Plugging (28) inside the integral and using the fact that ρk is the pushforward of ρ by Tk, we obtain

1

NZ

∫
wk(xi)L(Tk(xi))ρ(dxi)g(Tk(xi)) =

1

NZ

∫
1

ZT

dρ

dρT
(Tk(xi))L(Tk(xi))ρ(dxi)g(Tk(xi))

=
1

NZT

∫
dπ

dρT
(Tk(xi))ρ(dxi)g(Tk(xi))

=
1

NZT

∫
dπ

dρT
(y)ρk(dy)g(y) ,

18



Invertible Flow Non Equilibrium sampling

which shows (39). Using (29),

π̄(dy) =

N∑
i=1

K∑
k=0

π̄(i, k, dy) =

K∑
k=0

1

ZT

dπ

dρT
(y)ρk(dy) =

dπ

dρT
(y)ρT (dy) = π(dy) . (40)

Next, we establish that, for i ∈ {1, . . . , N},

π̄(dx1:N , i) =
Ẑxi

NZ
ρN (dx1:N ) , (41)

where, see (11),

Ẑx =

K∑
k=0

L(Tk(x))wk(x) . (42)

For all nonnegative measurable functions {fj}Nj=1,

N∑
i′=1

K∑
k=0

1{i}(i
′)

∫ N∏
j=1

fj(x
j)π̄(dx1:N , i′, k, dy) =

1

NZ

K∑
k=0

∫
wk(xi)L(Tk(xi))ρN (dx1:N )

N∏
j=1

fj(x
j)

=
1

NZ

∫
ẐxiρN (dx1:N )

N∏
j=1

fj(x
j) ,

which establishes (41). If we marginalize this distribution w.r.t the path index i, we get

π̄(dx1:N ) =
Ẑx1:N

Z
ρN (dx1:N ) , (43)

where Ẑx1:N =
∑N
i=1 Ẑxi/N , see (12). We then compute the conditional distributions and establish first

that for any i ∈ {1, . . . , N} and k ∈ {0, . . . ,K},

K1(i, k, y; dx1:N ) = π̄(dx1:N | i, k, y) = δT−k(y)(dx
i)Ri(x

i; dx1:N\{i}) . (44)

This corresponds to the first step of the InFiNE algorithm. We keep the i-th path and then draw N − 1
new paths from the conditional kernels Ri(xi; dx1:N\{i}). Because the paths are deterministic, we do not
need in practice to compute T−k(y) (which is the initial point of the path which has been selected). For all
nonnegative measurable functions {fj}Nj=1 and g,

1

NZ

∫ N∏
j=1

fj(x
j)g(y)π̄(dx1:N , i, k,dy)

=
1

NZ

∫ N∏
j=1

fj(x
j)g(Tk(xi))wk(xi)L(Tk(xi))ρ(dxi)Ri(x

i; dx1:N\{i})

=
1

NZ

∫ N∏
j=1

fj(x
j)g(Tk(xi))

1

ZT

dρ

dρT
(Tk(xi))L(Tk(xi))ρ(dxi)Ri(x

i; dx1:N\{i})

=
1

NZT

∫
fi(x

i)g(Tk(xi))
dπ

dρT
(Tk(xi))ρ(dxi)

∫
Ri(x

i; dx1:N\{i})
∏
j 6=i

fj(x
j) .
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Since ρk is the pushforward on ρ by Tk, the latter identity implies

1

NZ

∫ N∏
j=1

fj(x
j)g(y)π̄(dx1:N , i, k,dy)

=
1

NZT

∫
fi(T

−k(y))g(y)
dπ

dρT
(y)ρk(dy)

∫
Ri(T

−k(y); dx1:N\{i})
∏
j 6=i

fj(x
j)

=
1

NZT

∫
g(y)

dπ

dρT
(y)ρk(dy)

∫
δT−k(y)(dx

i)Ri(x
i; dx1:N\{i})

N∏
j=1

fj(x
j)

and the proof is concluded by (39). Next we show that, for i ∈ {1, . . . , N},

K2(x1:N ; i) = π̄(i | x1:N ) =
Ẑxi∑N
j=1 Ẑxj

. (45)

This is the third step of the InFiNE algorithm (the second step in our description amounts to computing the
new paths whence the starting points of the trajectories have been updated). For nonnegative measurable
functions {fj}Nj=1,

1

NZ

K∑
k=0

wk(xi)L(Tk(xi))ρ(dxi)Ri(x
i;dx1:N\{i})

N∏
`=1

f`(x
`)

=
1

NZ

∫
ẐxiρN (dx1:N )

N∏
`=1

f`(x
`)

=
1

NZ

∫
Ẑxi∑N
j=1 Ẑxj

N∑
j=1

ẐxjρN (dx1:N )

N∏
`=1

f`(x
`)

=

∫
Ẑxi∑N
j=1 Ẑxj

Ẑx1:N

Z
ρN (dx1:N )

N∏
`=1

f`(x
`)

=

∫
Ẑxi∑N
j=1 Ẑxj

π̄(dx1:N )

N∏
`=1

f`(x
`) ,

where we used (43) in the last identity. This establishes (45). We finally prove that for k ∈ {0, . . . ,K} and
i ∈ {1, . . . , N},

K3(i, x1:N ; k) = π̄(k | i, x1:N ) =
wk(Tk(xi))L(Tk(xi))

Ẑxi
. (46)

This is the fourth step of the InFiNE algorithm, which amounts to selecting a proposal along the selected
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path. Proceeding as above, for nonnegative measurable functions {fj}Nj=1,

1

NZ

∫
wk(Tk(xi))L(Tk(xi))ρ(dxi)Ri(x

i; dx1:N\{i})

N∏
j=1

fj(x
j)

=
1

NZ

∫
wk(Tk(xi))L(Tk(xi))

Ẑxi
ẐxiρN (dx1:N )

N∏
j=1

fj(x
j)

=

∫
wk(Tk(xi))L(Tk(xi))

Ẑxi
π̄(dx1:N , i)

N∏
j=1

fj(x
j) ,

where we used (41) in the last identity. This establishes (46). It follows directly from the definition of (38)
that

K4(x1:N , i, k; dy) = π̄(dy | x1:N , i, k) = δTk(xi)(dy) . (47)

This characterizes the sample produced at each iteration of the InFiNE algorithm, which is used to generate
the next starting point.

The InFiNE algorithm is a partially collapsed Gibbs. In the first step, (44), we use the full conditional.
In the second step, (45) (selection of the path index), we marginalize with respect to k and y:

N∑
i0=1

K∑
k0=0

∫
π̄(dx1:N

0 , i0, k0,dy0)K1(i0, k0, y0; dx1:N
1 )K2(x1:N

1 ; i1) = π̄(dx1:N
1 , i1) .

The transition kernel K3, defined in (46) is the full conditional in the decomposition

π̄(dx1:N
1 , i1)K3(i1, x

1:N
1 ; k1) = π̄(dx1:N

1 , i1, k1) .

The validity of the algorithm is guaranteed by noting that

π̄(dx1:N
1 , i1, k1)K4(x1:N

1 , i1, k1; dy1) = π̄(dx1:N
1 , i1, k1,dy1) .

B.4 Ergodicity of iterated SIR
The ergodicity of iterated SIR has been studied in Andrieu et al. (2018) in the case when the conditional
kernels are independent: Ri(xi; dx1:N\{i}) =

∏
j 6=i ρ(dxj) under the assumption that the likelihood is

bounded L∞ = supx∈Rd L(x) <∞. We extend the analysis to the case of dependent proposals. At iteration
k, denote by X1:N

k the set of proposals, Ik the proposal index and the conditioning proposal, Yk = XIk
k .

The algorithm goes as follows:

1. Set XIk
k+1 = Yk+1 and refresh the set of proposals by drawing X1:N\{Ik}

k+1 ∼ RIk(XIk
k+1, ·).

2. Compute the unnormalized importance weights ωik+1 = L(Xi
k+1), i ∈ {1, . . . , N}.

3. Draw Ik+1 ∈ {1, . . . , N} with probabilities proportional to {ωik+1}Ni=1.

4. Set Yk+1 = X
Ik+1

k+1 .
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The key of the analysis is to collapse the representation as to only retain the conditioning index Ik and the
conditioning proposal Yk. It is easily seen that {(Ik, Yk)}k≥0 is a Markov chain with Markov kernel defined
for any y ∈ Rd and A ∈ B(Rd) by

P (i, y; j ×A) =

∫
δy(dxi)Ri(x

i,dx1:N\{i})
L(xj)∑N
`=1 L(x`)

δxj (A) . (48)

Consider the following assumptions:

H1. The likelihood function L is both lower and upper bounded, i.e.

κ = inf
x∈Rd

L(x)
/

sup
x∈Rd

L(x) > 0 . (49)

For i ∈ {1, . . . , N} and j ∈ {1, . . . , N} \ {i}, we define for xi ∈ Rd and A ∈ B(Rd),

Ri,j(x
i, A) =

∫
Ri(x

i,dx1:N\{i})1A(xj) . (50)

If Ri(xi,dx1:N\{i}) =
∏
` 6=i ρ(dx`), then Ri,j(xi, A) = ρ(A). If the Markov kernel Ri satisfies (17), then

Ri,j(x,A) = M |j−i|(x,A).

H2. There exist C ∈ B(Rd) and ε > 0 such that, for any i 6= j ∈ {1, . . . , N}

1.
∑N
j=1Ri,j(x

i, C) > 0 for any xi ∈ Rd.

2. For any xi ∈ C and A ∈ B(Rd), Ri,j(xi, A) ≥ ερ(A).

Theorem 4. Assume H1 and H2. Then the conditional ISIR kernel P (see (48)) is irreducible, positive
recurrent and ergodic. If for all i ∈ {1, . . . , N}, Ri(xi; dx1:N\{i}) =

∏
j 6=i ρ(dxj), then P is uniformly

ergodic.

Proof. For all i ∈ {1, . . . , N} and y ∈ C and A ∈ B(Rd) we get

P (i, y; j ×A) =

∫
δy(dxi)Ri(x

i; dx1:N\{i})
L(xj)∑N
`=1 L(x`)

δxj (A) ≥ κε

N
ρ(A) .

Hence the set D = {1 . . . , N} × C is small. Under H2, we get

P (i, y;D) ≥ κ

N

N∑
j=1

Ri,j(y, C) > 0 ,

showing that D is accessible. Since D is accessible and small and π̄(i× dy) = 1
Nπ(dy) is invariant by P ,

then P is positive recurrent (see Douc et al. (2018), Theorem 10.1.6). If the proposals are independent, the
whole state space is small and hence the Markov kernel P is uniformly geometrically ergodic.

The conditions for the InFiNE algorithm are similar.
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C Additional details about the experiments

C.1 Additional experiments
In this section, we consider the target Funnel distribution, following Jia and Seljak (2020). The dimension d
is set to 16, and the target distribution is

π(x) = N(x1; 0, a2)

d∏
i=2

N(xi; 0, e2bx1) ,

with a = 1 and b = 0.5 and where x = (x1, . . . , xd). The normalizing constant of π is thus Z = 1 here.
InFiNE is used to estimateZ and obtain samples approximately distributed according to π. A reliable choice
for the mass matrix and the step-size of InFiNE is obtained by running a warm-up chain of the adaptive HMC
or NUTS algorithm given by the Pyro framework which provides estimates of those parameters Bingham
et al. (2019). Therefore, we set the mass matrix and the step size for InFiNE to those provided by the Pyro
adaptive scheme. The length K of the trajectories of the InFiNE sampler is set to the number of leapfrog
steps of the HMC algorithm, here K = 10.

We draw n = 104 samples and compare them to 106 samples from NUTS. We also compare these
to K · 104 = 105 samples drawn with ISIR. The prior distribution is chosen as a centered Gaussian with
variance σ2Id with σ2 = 4. The results of InFiNE and HMC are similar. Note however that InFiNE lends
itself easily to parallel implementations: conformal Hamiltonian integration of the N paths, which is the
main computational bottleneck, can be parallelized.
We also present the normalizing constant estimation of this distribution. We initialize the mass matrix and

Figure 5: Empirical histograms of samples from the Funnel distribution. From left to right, target distribution
(very long run of NUTS), ISIR, HMC and InFiNE
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the step-size as discussed previously, and compare IS, AIS, and InFiNE schemes. The IS estimator is run
with 2 · 105 samples. For the InFiNE estimator, the number of samples is N = 2 · 104 and the trajectory
length is K = 10. The AIS estimator is run with 2 · 104 samples, with the annealing scheme presented in
(Grosse et al., 2015, Section 6.2) of length K = 50. Moreover, the parameters of the HMC transitions in
AIS (mass matrix, step-size) are set to the estimated parameters of the HMC algorithm in Pyro.

C.2 VAE experiments
We detail in this section InFiNE VAE with N samples (similarly to the IWAE algorithm). Recall that for
each sample, a trajectory of length K is produced. For simplicity, we use N = 1 in all our experiments to
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0.5 1.0 1.5 2.0 2.5 3.0 3.5

IS

AIS

InFiNE

Figure 6: 200 independent estimations of the normalizing constant of π. The prior used is a centered
Gaussian distribution with 4Id as covariance matrix. The true value is Z = 1 (red line). The figure displays
the median (square) and the interquartile range (solid lines) in each case.

outline InFiNE VAE in several experimental settings. It is expected that extension to N > 1 will further
improve the results. Recall that the lower bound LInFiNE is

LInFiNE(θ, φ; y) =

∫
ρN (x1:N ) log Ẑx1:Ndx1:N ,

=

∫ N∏
i=1

qφ(xi | y) log

(
N−1

N∑
i=1

K∑
k=0

wk(xi)
pθ(y,T

k(xi))

qφ(Tk(xi) | y)

)
dx1:N .

Assume here that qφ is amenable to the reparameterization trick, that is, there exist some diffeomorphism
Vφ,y and some fixed pdf g, such that sampling x ∼ qφ(· | y) boils down to sampling ε ∼ g and set
x = Vφ,y(ε). In the particular case where N = 1, an estimator of the ELBO and of its gradient are given by

L̂InFiNE(θ, φ; y) = log

K∑
k=0

wk(x)
pθ(y,T

k(x))

qφ(Tk(x) | y)
, where x ∼ qφ(· | y) ,

∇L̂InFiNE(θ, φ; y) = ∇ log

K∑
k=0

wk(Vφ,y(ε))
pθ(y,T

k(Vφ,y(ε)))

qφ(Tk(Vφ,y(ε)) | y)
, where ε ∼ g .

This is the setting we consider in our experiments. More generally, inspired by the IWAE approach, we can
write an estimator of the ELBO and of its gradient as

L̂InFiNE(θ, φ; y) = log

(
N−1

N∑
i=1

K∑
k=0

wk(xi)
pθ(y,T

k(xi))

qφ(Tk(xi) | y)

)
, where x1:n iid∼ qφ(· | y) ,

∇L̂InFiNE(θ, φ; y) =

N∑
i=1

$i∇ log

(
K∑
k=0

wk(Vφ,y(εi))
pθ(y,T

k(Vφ,y(εi)))

qφ(Tk(Vφ,y(εi)) | y)

)
(51)

=

N∑
i=1

$i∇ log ẐVφ,y(εi) , where ε1:n iid∼ g , (52)

where $i = Ẑxi/(NẐx1:n).
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Algorithm 2 InFiNE VAE, trajectory length K, and N samples
Input: batch of samples x, latent dim d.
(µ, log σ)← EncoderNeuralNetφ(x).
Sample N initial position and momentums: qi ∼ N (µ, diag(σ2)) and pi ∼ N (0, Id).
for i = 1 to N do

Compute Tk(qi, pi) This implies forward / backward passes in the decoder to get ∇ log pθ(q
k
i ).

Compute $i.
end for
Compute the ELBOθ,φ gradient estimator (51).
SGD update of parameters (θ, φ) using the gradient estimatior.

Table 2 displays the Negative loglikelihood estimates using both IS and InFiNE on the FashionMNIST
dataset Xiao et al. (2017). The settings are the same than those used in the MNIST experiment. The
conclusions are similar: the InFiNE estimate is almost always better than the IS estimate, by a large margin
on small dimensions. The InFiNE VAEs are always better than standard VAEs, and better than IWAE with
N = 30 when the dimension of the latent space is small to moderate. When the dimension of the latent
space increases (d = 50), the performance differences become relatively small.

Table 2: NLL estimates for VAE models on FashionMNIST for different latent space dimensions.
d = 4 d = 8 d = 16 d = 50

model IS InFiNE IS InFiNE IS InFiNE IS InFiNE

VAE 240.61 240.19 235.78 235.73 235.02 234.96 234.82 234.83
IWAE, N = 5 239.66 239.27 234.05 233.98 233.12 233.12 233.52 233.46

IWAE, N = 30 239.25 238.47 233.63 233.49 233.01 232.71 232.88 232.76
InFiNE VAE, K = 3 238.64 237.91 233.49 233.48 233.26 233.09 233.33 233.35
InFiNE VAE, K = 10 238.89 238.46 233.51 233.45 233.24 233.15 233.28 233.26

D Connection with Nested sampling
We return here to the problem of computing the normalizing constant Z of the target density π(x) =
ρ(x)L(x)/Z to point out a simplification induced by our method compared to the method proposed in Rot-
skoff and Vanden-Eijnden (2019). The method proposed in Rotskoff and Vanden-Eijnden (2019) uses the
identity

Z =

∫ ∫ ∞
0

1(L(x) > `)ρ(x)d`dx =

∫ ∞
0

PX∼ρ(L(X) > `)d` , (53)

which was instrumental in the construction of nested sampling Skilling (2006); Chopin and Robert (2010).
Using identical level sets as Skilling (2006), of the form O := {x : L(x) > `} with ` > 0 and their dis-
sipative Langevin dynamics, (Rotskoff and Vanden-Eijnden, 2019, Equation 13) obtain a concise estimator
of the volume of these level sets based on the length of the path (Tk(Xi))k∈N remaining inside O. (This
estimator is constructed under a uniform prior assumption and continuous-time integrator, but the argument
in Rotskoff and Vanden-Eijnden (2019) easily translates to discrete-time.)

Considering instead InFiNE, it provides an approximation of PX∼ρ(L(X) > `) for a fixed `, but a
more efficient resolution is available, which bypasses repeated approximations induced by the quadrature
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version of both Skilling (2006); Rotskoff and Vanden-Eijnden (2019). The crux of the improvement is
that paths only need be simulated once, using only the stopping time associated with the lowest positive `
found in early simulations. Integration over the likelihood levels ` can then be accomplished with no further
approximation. Using a single stopping time as indicated earlier, the following is an unbiased estimator of
PX∼ρ(L(X) > `) for all values of `:

P̂X∼ρ(L(X) > `) =
1

N

N∑
i=1

K∑
k=0

1{L(Tk(Xi))>`}wk(Xi) , Xi iid∼ ρ , (54)

where the weightswk(Xi), defined in (9), incorporate the stopping times. Integrating the above over ` ∈ R+

as in (53) leads to an estimator of the normalizing constant Z:

ẐX1:N =
1

N

N∑
i=1

K∑
k=0

∫
R+

I(L(Tk(Xi)) > `)wk(Xi)d`

=
1

N

N∑
i=1

K∑
k=0

L(Tk(Xi))wk(xi) , (55)

where we used the slice sampling identity∫
R+

1{L(Tk(x))>`}d` = L(Tk(x)) .

In conclusion, the InFiNE estimator of Z coincides with the conformal Hamiltonian version of nested
sampling with the additional benefit of removing the quadrature approximation. (Note that, as suggested
Remark 1, we could resort to both forward and backward push-forward rather than starting at k = 0, which
could only improve the precision of the estimator (55).)
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