Statistically Efficient, Polynomial Time Algorithms for Combinatorial Semi Bandits - Archive ouverte HAL
Article Dans Une Revue Proceedings of the ACM on Measurement and Analysis of Computing Systems Année : 2021

Statistically Efficient, Polynomial Time Algorithms for Combinatorial Semi Bandits

Algorithmes statistiquement efficaces et en temps polynomial pour les semi-bandits combinatoires

Richard Combes
Eric Gourdin
  • Fonction : Auteur
  • PersonId : 952670

Résumé

We consider combinatorial semi-bandits over a set of arms X ⊂ {0, 1} d where rewards are uncorrelated across items. For this problem, the algorithm ESCB yields the smallest known regret bound R(T) = O d(ln m)² (ln T) ∆ min , but it has computational complexity O(|X|) which is typically exponential in d, and cannot be used in large dimensions. We propose the first algorithm which is both computationally and statistically efficient for this problem with regret R(T) = O d(ln m) 2 (ln T) ∆ min and computational complexity O(T poly(d)). Our approach involves carefully designing an approximate version of ESCB with the same regret guarantees, showing that this approximate algorithm can be implemented in time O(T poly(d)) by repeatedly maximizing a linear function over X subject to a linear budget constraint, and showing how to solve this maximization problems efficiently.
Fichier principal
Vignette du fichier
2002.07258.pdf (621.61 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03162127 , version 1 (08-03-2021)

Identifiants

Citer

Thibaut Cuvelier, Richard Combes, Eric Gourdin. Statistically Efficient, Polynomial Time Algorithms for Combinatorial Semi Bandits. Proceedings of the ACM on Measurement and Analysis of Computing Systems , 2021, 5 (9), pp.1-31. ⟨10.1145/3447387⟩. ⟨hal-03162127⟩
100 Consultations
64 Téléchargements

Altmetric

Partager

More