Equivalence of some subcritical properties in continuum percolation - Archive ouverte HAL
Article Dans Une Revue Bernoulli Année : 2019

Equivalence of some subcritical properties in continuum percolation

Résumé

We consider the Boolean model on Rd. We prove some equivalences between subcritical percolation properties. Let us introduce some notations to state one of these equivalences. Let C denote the connected component of the origin in the Boolean model. Let |C| denotes its volume. Let ℓ denote the maximal length of a chain of random balls from the origin. Under optimal integrability conditions on the radii, we prove that E(|C|) is finite if and only if there exists A,B > 0 such that P(ℓ ≥ n) ≤ Ae−Bn for all n ≥ 1.

Dates et versions

hal-03158712 , version 1 (04-03-2021)

Identifiants

Citer

Jean-Baptiste Gouéré, Marie Théret. Equivalence of some subcritical properties in continuum percolation. Bernoulli, 2019, 25 (4B), pp.3714-3733. ⟨10.3150/19-BEJ1108⟩. ⟨hal-03158712⟩

Relations

87 Consultations
0 Téléchargements

Altmetric

Partager

More